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1 Equations satisfied by the correlators in the TASEP

Averaging the master equation associated with the TASEP, the particle densities satisfy the follow-
ing relations [1]:

0=(r)n — (n72)n — a(l = (T1)N), (S1)
0= <TiTi+1>N_<Ti—1Ti>N_<Ti>N+<Ti—1>N7 fOIQSiSN—l, (82)
0=pB(tn)N — (TN—1)N + (TN—1TN) N (S3)

Note that (S2) implies (7;(1 — 7j11))y = (i=1(1 — 7))y for all i = 2,..., N — 1. This translation-
invariant quantity is called the current (or flux) and is denoted by J. One can also relate the
two-point correlators with the three-point correlators as

0= (mmm)y — ()Nl + a) + a(n)N, (S4)
0= (Ti—1TiTitx1)N — (Ti—2Ti—1Ti)N — (Ti—1Ti) N + (Ti—2Ti)n, for3<i< N —1, (S5)

0= <TN—27N—1TN>N - <TN—27-N>N + /8<7'N—1TN>N-

2 Description of the matrix Ansatz used in the simple TASEP

To derive analytical expressions for the average densities of the TASEP, Derrida et al. [2] showed
that the steady state probability of a given configuration can be derived using a matrix formulation

as
f]v(tl, N ,tN)
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where
N
Inlte, . i) = (WI[D + (1= &) E|V).
i=1
Here, D and E are infinite dimensional square matrices and |V) and (W] are column and row
vectors respectively satisfying

DE=D+E,
1
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Using this formulation, the particle density can be derived as

(W|C='DCN=|V)
(wieny -

(Ti)ny =
where C = D + E. More generally, for any given index set i1,149,...,4 such that 1 <i; < -+ <
i < N, we get
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Using these algebraic rules, Derrida et al. [2] obtained exact formulas for (;) ;. More precisely, for
1< N-—-1,
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p( 2N —1—p)| a1 — a1
(wich ) = Z ) [ﬁp . T ],
and (W|V) = 1.

3 Computing the density of isolated particles

Using the matrix Ansatz, we derive here an analytical expression for the average density of isolated
particles (7). Our goal is to get (7})n as a function of the average densities (7;)n. The density
of isolated particles inside the lattlce (2 <i< N —1)is given by (see equation (2))

(TN = (Ti)N — (TicaTi)N — (TiTip1) N + (Tic1TiTig1) V- (S6)



For 2 < j < N —1, we first derive the expression of the two point correlators (7;7;41)n by summing
equation (S2) over i € {2,...,7} and using the boundary equation (S1)

(TjTj+1)N = (Tj)n —a (1 —(r)N). (S7)

Similarly, for 3 < 7 < N — 1, summing equation (S5) from ¢ = 3 to j and using boundary equations
(S1) and (S4) gives
J
(Tj-17j TN = (MTems)N + D _(Tp1Tp)N — (Tp—2Tp)N
p=3

J

=1+ a)2<7'1>N —a(l+a+(r)N)+ Z<Tp*17p>N — (Tp—2Tp) N (S8)
p=3

Using the matrix formulation and the identities DCD = D(DC — DE+ ED) = DDC —-DC+CD,
we get,
( > (W|CP=3DCDCN-P|V)
Tp—2Tp)N =
po2IRIN (W[CN V)

= (Tp—2Tp—1)N + IN ({(Tp—1)N—1 — (Tp—2)N—1) , (S9)

where Jy = % = o (1 — (71)n) is the particle current at steady state [2]. Combining (S9)

with (S8) and using (S6) and (S1) yield the result for the three-point correlator
(rj1miTjr) N = ()N —a[l + a+(n)y — 2+ ) (n)n] = In (1) v -1 — {11)n-1) (S10)

for 3<j < N —1. Using (S1) and (S4), this equation is also true for j = 2. Using (S10), (S7) and
(2) gives us the formula for the density of isolated particles

(thn =a[l —(m)y +a((m)y —1)] = IN (Tim1)n—1 — (T1)n—1), for2<i< N—1.
Finally we can use Jy = a (1 — (1)) to write the above formula in a more compact notation, as
(t)Yn = Do(a, B,N) — Di(c, 8, N)(Ti—1)N—1, (S11)
where

Do(a, 8, N) = a[l = (m)n +a({(m)n — D] + (1 = (T1)N) (T1)N-1,
Dl(a,ﬁ,N) = a(l — <7—1>N)-

Similarly, using equations (S1) and (S3) at the boundaries yields

(r)n =a(l = (m)n),
(tn)n = (TN)N(1 4+ B) = (Tn—1)N-



4 Asymptotics of the simple TASEP

We provide here the asymptotics for the densities of the TASEP. For large lattice size N, the flux
of particles J is given by [2]

1 1
T ifa>—-, > B (MC regime),

J~qa(l—a), ifa<=, §>a (LD regime),

NI =N RN

B(l—=75), if <=, B<a (HD regime).

The densities at the boundaries and at positions next to them are given by [2]

J
~ 1 —_ —
<7—1>N 047

(2)nv ~1—J— (J)Z’

o
(TN-1)Nn ~ J + (;)2,
(TN)N ~ g

Out of the boundaries and for large 1 < n < N [2,3],

Lo (26-1)° +4 o1 1 '
27 2w T 16ym(28 — 12nd if 0> o, 8> 5 (MC regime),
1— n+1 )
( ) ot (H) (1-25), fa<p< B (LD I regime),
TN-n)N ~
4" (a(1 — o))t 1 B 1 £ o< 1 < § (LD 11 regime)
\/77-”3/2 (1 _ 2/3)2 (1 - 2@)2 , o 9 regime),
1= if g < %7 B < a (HD regime).

Using these formulae in (S11) leads to asymptotics for the density of isolated particles.

5 Density of isolated particles in the bulk for the /-TASEP

We compute here an estimate of the density of isolated particles of size ¢ in the bulk ((1;), 1 <
i < N —1). To do so, we use an approximation from Lakatos and Chou [4], assuming that the
number of states of n particles of length I, confined to a length of N’ > n/ lattice sites, is given by

the partition function [5]
/ fR—— —_—
Z(n, N') = <N (¢ ””). (S12)
n



For a given position ¢ € {1,...,< N — [}, we introduce z; and xf as the positions of the closest
particles to the left and the right of ¢, respectively, so we get

(h =P(ri =1, x] <i—{, xf >i+0)

=P(ri = 1)P(z; <i—{ af >i+l|m=1). (S13)
Assuming z; and :rj being independent yields
<7'./> :P(Ti = 1)]?(33; <i—/ ’ T = 1)][1’(3;;" >i4 /L ‘ T = 1>.

Using (S12), the probability p:{ N that :cj > i+£, conditioned on 7; = 1 and there being n particles
in the window [i + £ : i+ ¢+ N' —1] is
Z(n,N' —1) 1—pt
+ ;7 — ! - 814
PoNt =7 N T 1—p(l— 1) (514)

where p = §7. When n and N’ get large and assuming the density of particles in the bulk of the
lattice to be approximately constant (denoted (7)), we can replace p! \, and p in equation (S14)

by P(z7 > i+ ¢ | 7 = 1) and (1), respectively, which gives

P(a;j>z'+£|n=1)=1_1<;><(;>_£1).

Similarly, we obtain P(z; <i—/¢| 1 =1)= %. Combining these relations and replacing
P(r; = 1) by (7) in equation (S13), we obtain that the density of isolated particles in the bulk,
simply denoted (7'), is given by

/ 1 - £<T> >2
= — ). 1
) =0 (= (515)
Similarly, for isolation range d, we obtain

(d) B Z(n,N'"—d) 2
(DY~ P(r; = 1) [Z(n, w ]

which simplies to the following expression in the large-N limit:

)

1—4r) 7™
e~ 0 [ =)



6 Asymptotics of the (-TASEP

We provide here the asymptotics for the densities and current of the TASEP with extended particles
and open boundaries from the mean field model of Lakatos and Chou [4]. The current is given by

1
, if a>a*, g> 5" (MC regime),
(1+V0)? ( )
1—
J ~ M, if a < a*, B>« (LD regime), (S16)
pA-B) . :
f * HD
T+ =18 it < p B<al regime),
where o* = * = ﬁ. The density (7;) in the bulk (position i € [ +1: N — ¢ — 1]) is then
approximated by
1

m, if a >a*, > p* (MC regime),

(7~ 1t (C—1)J -1+ {-1)J)2—40J
20 ’
1+(—-1)J+/A+E—-1)J)2—40]
2/ ’

if « <, > a (LD regime),

if 8 < %, 8 < a (HD regime).

Using these formulae in (S15) leads to asymptotics for the density of isolated particles.
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Figure S1: The density of particles in the /-TASEP model. We simulated and plot (in
black) the density of particles of the /~-TASEP (¢ = 10) in the different regimes LD, HD and MC.
In red, we plot the estimates of the density in the bulk from Lakatos and Chou [4].
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Figure S2: The particle flux in the /-TASEP model in function of «. For different values
of 5, we compare in function of « the flux obtained from Monte Carlo simulations (same as in
Figure 3B) and asymptotic estimates from Lakatos and Chou [4], given by equation (S16).
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Figure S3: The plot shows the translation efficiency (the number of ribosomes per codon for each
mRNA copy, up to a constant) obtained from ribosome profiling data in S. cerevisiae (Weinberg
et al. [6]) against the total ribosome density obtained from polysome profiling (Arava et al. [7]).
Applying a linear fit y = ax (plotted in dotted line) to genes with total density less than 1 ribosome
per 100 codons gives, with 95% confidence interval, a = 0.82 (0.75,0.89).
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Figure S4: The fraction of isolated particles and interference rate as a function of
<T(d)>. A: For different isolation ranges d € {1,...,6}, we plot the fraction of isolated particles as
a function of the average density of isolated particles (7(4)), according to (16). Note that for given
d, some values of <7‘(d)> can lead to two possible fractions of isolated particles. B: As in A, we plot
the isolation rate as a function of the average density of isolated particles (7(4), according to (17).
Note that for (7(9)) < 0.02 and all d, the initiation rates associated with the lower branch are very
close.
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