Supporting Information

Theoretical quantification of interference in the TASEP: application to mRNA translation shows near-optimality of termination rates

Khanh Dao Duc ${ }^{1,2}$, Zain H. Saleem ${ }^{1}$, and Yun S. Song ${ }^{1,2,3,4, *}$

${ }^{1}$ Department of Mathematics, University of Pennsylvania, PA 19104, USA
${ }^{2}$ Department of Biology, University of Pennsylvania, PA 19104, USA
${ }^{3}$ Computer Science Division and Department of Statistics, University of California, Berkeley, CA 94720, USA
${ }^{4}$ Chan Zuckerberg Biohub, San Francisco, CA 94158

* To whom correspondence should be addressed: yss@berkeley.edu

1 Equations satisfied by the correlators in the TASEP

Averaging the master equation associated with the TASEP, the particle densities satisfy the following relations [1]:

$$
\begin{align*}
& 0=\left\langle\tau_{1}\right\rangle_{N}-\left\langle\tau_{1} \tau_{2}\right\rangle_{N}-\alpha\left(1-\left\langle\tau_{1}\right\rangle_{N}\right) \tag{S1}\\
& 0=\left\langle\tau_{i} \tau_{i+1}\right\rangle_{N}-\left\langle\tau_{i-1} \tau_{i}\right\rangle_{N}-\left\langle\tau_{i}\right\rangle_{N}+\left\langle\tau_{i-1}\right\rangle_{N}, \quad \text { for } 2 \leq i \leq N-1, \tag{S2}\\
& 0=\beta\left\langle\tau_{N}\right\rangle_{N}-\left\langle\tau_{N-1}\right\rangle_{N}+\left\langle\tau_{N-1} \tau_{N}\right\rangle_{N} . \tag{S3}
\end{align*}
$$

Note that (S2) implies $\left\langle\tau_{i}\left(1-\tau_{i+1}\right)\right\rangle_{N}=\left\langle\tau_{i-1}\left(1-\tau_{i}\right)\right\rangle_{N}$ for all $i=2, \ldots, N-1$. This translationinvariant quantity is called the current (or flux) and is denoted by J. One can also relate the two-point correlators with the three-point correlators as

$$
\begin{align*}
& 0=\left\langle\tau_{1} \tau_{2} \tau_{3}\right\rangle_{N}-\left\langle\tau_{1} \tau_{2}\right\rangle_{N}(1+\alpha)+\alpha\left\langle\tau_{2}\right\rangle_{N}, \tag{S4}\\
& 0=\left\langle\tau_{i-1} \tau_{i} \tau_{i+1}\right\rangle_{N}-\left\langle\tau_{i-2} \tau_{i-1} \tau_{i}\right\rangle_{N}-\left\langle\tau_{i-1} \tau_{i}\right\rangle_{N}+\left\langle\tau_{i-2} \tau_{i}\right\rangle_{N}, \quad \text { for } 3 \leq i \leq N-1, \tag{S5}\\
& 0=\left\langle\tau_{N-2} \tau_{N-1} \tau_{N}\right\rangle_{N}-\left\langle\tau_{N-2} \tau_{N}\right\rangle_{N}+\beta\left\langle\tau_{N-1} \tau_{N}\right\rangle_{N} .
\end{align*}
$$

2 Description of the matrix Ansatz used in the simple TASEP

To derive analytical expressions for the average densities of the TASEP, Derrida et al. [2] showed that the steady state probability of a given configuration can be derived using a matrix formulation as

$$
\mathbb{P}\left(t_{1}, \ldots, t_{N}\right)=\frac{f_{N}\left(t_{1}, \ldots, t_{N}\right)}{\sum_{\theta_{1}=0,1} \ldots \sum_{\theta_{N}=0,1} f_{N}\left(\theta_{1}, \ldots, \theta_{N}\right)},
$$

where

$$
f_{N}\left(t_{1}, \ldots, t_{N}\right)=\langle W| \prod_{i=1}^{N}\left(t_{i} D+\left(1-t_{i}\right) E|V\rangle .\right.
$$

Here, D and E are infinite dimensional square matrices and $|V\rangle$ and $\langle W|$ are column and row vectors respectively satisfying

$$
\begin{aligned}
D E & =D+E, \\
D|V\rangle & =\frac{1}{\beta}|V\rangle, \\
\langle W| E & =\frac{1}{\alpha}\langle W| .
\end{aligned}
$$

Using this formulation, the particle density can be derived as

$$
\left\langle\tau_{i}\right\rangle_{N}=\frac{\langle W| C^{i-1} D C^{N-i}|V\rangle}{\langle W| C^{N}|V\rangle},
$$

where $C=D+E$. More generally, for any given index set $i_{1}, i_{2}, \ldots, i_{k}$ such that $1 \leq i_{1}<\cdots<$ $i_{k} \leq N$, we get

$$
\left\langle\tau_{i_{1}} \ldots \tau_{i_{k}}\right\rangle_{N}=\frac{\langle W| C^{i_{1}-1} D C^{i_{2}-i_{1}-1} \ldots C^{i_{k}-i_{k-1}-1} D C^{N-i_{k}}|V\rangle}{\langle W| C^{N}|V\rangle} .
$$

Using these algebraic rules, Derrida et al. [2] obtained exact formulas for $\left\langle\tau_{i}\right\rangle_{N}$. More precisely, for $i \leq N-1$,

$$
\left\langle\tau_{i}\right\rangle_{N}=\sum_{p=0}^{N-i-1} \frac{(2 p)!}{p!(p+1)!} \frac{\langle W| C^{N-1-p}|V\rangle}{\langle W| C^{N}|V\rangle}+\frac{\langle W| C^{i-1}|V\rangle}{\langle W| C^{N}|V\rangle} \sum_{p=2}^{N-i+1} \frac{(p-1)(2 N-2 i-p)!}{(N-i)!(N-i+1-p)!} \frac{1}{\beta^{p}},
$$

while for $i=N$,

$$
\left\langle\tau_{N}\right\rangle_{N}=\frac{1}{\beta} \frac{\langle W| C^{N-1}|V\rangle}{\langle W| C^{N}|V\rangle},
$$

where

$$
\langle W| C^{N}|V\rangle=\sum_{p=1}^{N} \frac{p(2 N-1-p)!}{N!(N-p)!}\left[\frac{\frac{1}{\beta^{p+1}}-\frac{1}{\alpha^{p+1}}}{\frac{1}{\beta}-\frac{1}{\alpha}}\right]
$$

and $\langle W \mid V\rangle=1$.

3 Computing the density of isolated particles

Using the matrix Ansatz, we derive here an analytical expression for the average density of isolated particles $\left\langle\tau_{j}^{\prime}\right\rangle_{N}$. Our goal is to get $\left\langle\tau_{j}^{\prime}\right\rangle_{N}$ as a function of the average densities $\left\langle\tau_{j}\right\rangle_{N}$. The density of isolated particles inside the lattice $(2 \leq i \leq N-1)$ is given by (see equation (2))

$$
\begin{equation*}
\left\langle\tau_{i}^{\prime}\right\rangle_{N}=\left\langle\tau_{i}\right\rangle_{N}-\left\langle\tau_{i-1} \tau_{i}\right\rangle_{N}-\left\langle\tau_{i} \tau_{i+1}\right\rangle_{N}+\left\langle\tau_{i-1} \tau_{i} \tau_{i+1}\right\rangle_{N} . \tag{S6}
\end{equation*}
$$

For $2 \leq j \leq N-1$, we first derive the expression of the two point correlators $\left\langle\tau_{j} \tau_{j+1}\right\rangle_{N}$ by summing equation (S2) over $i \in\{2, \ldots, j\}$ and using the boundary equation (S1)

$$
\begin{equation*}
\left\langle\tau_{j} \tau_{j+1}\right\rangle_{N}=\left\langle\tau_{j}\right\rangle_{N}-\alpha\left(1-\left\langle\tau_{1}\right\rangle_{N}\right) . \tag{S7}
\end{equation*}
$$

Similarly, for $3 \leq j \leq N-1$, summing equation (S5) from $i=3$ to j and using boundary equations (S1) and (S4) gives

$$
\begin{align*}
\left\langle\tau_{j-1} \tau_{j} \tau_{j+1}\right\rangle_{N} & =\left\langle\tau_{1} \tau_{2} \tau_{3}\right\rangle_{N}+\sum_{p=3}^{j}\left\langle\tau_{p-1} \tau_{p}\right\rangle_{N}-\left\langle\tau_{p-2} \tau_{p}\right\rangle_{N} \\
& =(1+\alpha)^{2}\left\langle\tau_{1}\right\rangle_{N}-\alpha\left(1+\alpha+\left\langle\tau_{2}\right\rangle_{N}\right)+\sum_{p=3}^{j}\left\langle\tau_{p-1} \tau_{p}\right\rangle_{N}-\left\langle\tau_{p-2} \tau_{p}\right\rangle_{N} . \tag{S8}
\end{align*}
$$

Using the matrix formulation and the identities $D C D=D(D C-D E+E D)=D D C-D C+C D$, we get

$$
\begin{align*}
\left\langle\tau_{p-2} \tau_{p}\right\rangle_{N} & =\frac{\langle W| C^{p-3} D C D C^{N-p}|V\rangle}{\langle W| C^{N}|V\rangle} \\
& =\left\langle\tau_{p-2} \tau_{p-1}\right\rangle_{N}+J_{N}\left(\left\langle\tau_{p-1}\right\rangle_{N-1}-\left\langle\tau_{p-2}\right\rangle_{N-1}\right), \tag{S9}
\end{align*}
$$

where $J_{N}=\frac{\langle W| C^{N-1}|V\rangle}{\langle W| C^{N}|V\rangle}=\alpha\left(1-\left\langle\tau_{1}\right\rangle_{N}\right)$ is the particle current at steady state [2]. Combining (S9) with (S8) and using (S6) and (S1) yield the result for the three-point correlator

$$
\begin{equation*}
\left\langle\tau_{j-1} \tau_{j} \tau_{j+1}\right\rangle_{N}=\left\langle\tau_{j-1}\right\rangle_{N}-\alpha\left[1+\alpha+\left\langle\tau_{2}\right\rangle_{N}-(2+\alpha)\left\langle\tau_{1}\right\rangle_{N}\right]-J_{N}\left(\left\langle\tau_{j-1}\right\rangle_{N-1}-\left\langle\tau_{1}\right\rangle_{N-1}\right), \tag{S10}
\end{equation*}
$$

for $3 \leq j \leq N-1$. Using (S1) and (S4), this equation is also true for $j=2$. Using (S10), (S7) and (2) gives us the formula for the density of isolated particles

$$
\left\langle\tau_{i}^{\prime}\right\rangle_{N}=\alpha\left[1-\left\langle\tau_{2}\right\rangle_{N}+\alpha\left(\left\langle\tau_{1}\right\rangle_{N}-1\right)\right]-J_{N}\left(\left\langle\tau_{i-1}\right\rangle_{N-1}-\left\langle\tau_{1}\right\rangle_{N-1}\right), \text { for } 2 \leq i \leq N-1 .
$$

Finally we can use $J_{N}=\alpha\left(1-\left\langle\tau_{1}\right\rangle_{N}\right)$ to write the above formula in a more compact notation, as

$$
\begin{equation*}
\left\langle\tau_{i}^{\prime}\right\rangle_{N}=D_{0}(\alpha, \beta, N)-D_{1}(\alpha, \beta, N)\left\langle\tau_{i-1}\right\rangle_{N-1}, \tag{S11}
\end{equation*}
$$

where

$$
\begin{aligned}
& D_{0}(\alpha, \beta, N)=\alpha\left[1-\left\langle\tau_{2}\right\rangle_{N}+\alpha\left(\left\langle\tau_{1}\right\rangle_{N}-1\right)\right]+\alpha\left(1-\left\langle\tau_{1}\right\rangle_{N}\right)\left\langle\tau_{1}\right\rangle_{N-1}, \\
& D_{1}(\alpha, \beta, N)=\alpha\left(1-\left\langle\tau_{1}\right\rangle_{N}\right) .
\end{aligned}
$$

Similarly, using equations (S1) and (S3) at the boundaries yields

$$
\begin{aligned}
\left\langle\tau_{1}^{\prime}\right\rangle_{N} & =\alpha\left(1-\left\langle\tau_{1}\right\rangle_{N}\right), \\
\left\langle\tau_{N}^{\prime}\right\rangle_{N} & =\left\langle\tau_{N}\right\rangle_{N}(1+\beta)-\left\langle\tau_{N-1}\right\rangle_{N} .
\end{aligned}
$$

4 Asymptotics of the simple TASEP

We provide here the asymptotics for the densities of the TASEP. For large lattice size N, the flux of particles J is given by [2]

$$
J \sim \begin{cases}\frac{1}{4}, & \text { if } \alpha>\frac{1}{2}, \beta>\frac{1}{2}(\mathrm{MC} \text { regime }) \\ \alpha(1-\alpha), & \text { if } \alpha<\frac{1}{2}, \beta>\alpha(\text { LD regime }) \\ \beta(1-\beta), & \text { if } \beta<\frac{1}{2}, \beta<\alpha(\text { HD regime })\end{cases}
$$

The densities at the boundaries and at positions next to them are given by [2]

$$
\begin{aligned}
\left\langle\tau_{1}\right\rangle_{N} & \sim 1-\frac{J}{\alpha} \\
\left\langle\tau_{2}\right\rangle_{N} & \sim 1-J-\left(\frac{J}{\alpha}\right)^{2} \\
\left\langle\tau_{N-1}\right\rangle_{N} & \sim J+\left(\frac{J}{\beta}\right)^{2} \\
\left\langle\tau_{N}\right\rangle_{N} & \sim \frac{J}{\beta}
\end{aligned}
$$

Out of the boundaries and for large $1 \ll n \ll N[2,3]$,

$$
\left\langle\tau_{N-n}\right\rangle_{N} \sim \begin{cases}\frac{1}{2}-\frac{1}{2 \sqrt{\pi n}}+\frac{(2 \beta-1)^{2}+4}{16 \sqrt{\pi}(2 \beta-1)^{2} n^{3 / 2}}, & \text { if } \alpha>\frac{1}{2}, \beta>\frac{1}{2} \text { (MC regime) } \\ \alpha+\left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right)^{n+1}(1-2 \beta), & \text { if } \alpha<\beta<\frac{1}{2} \text { (LD I regime) } \\ \alpha+\frac{4^{n}(\alpha(1-\alpha))^{n+1}}{\sqrt{\pi} n^{3 / 2}}\left[\frac{1}{(1-2 \beta)^{2}}-\frac{1}{(1-2 \alpha)^{2}}\right], & \text { if } \alpha<\frac{1}{2}<\beta \text { (LD II regime) } \\ 1-\beta, & \text { if } \beta<\frac{1}{2}, \beta<\alpha \text { (HD regime) }\end{cases}
$$

Using these formulae in (S11) leads to asymptotics for the density of isolated particles.

5 Density of isolated particles in the bulk for the ℓ-TASEP

We compute here an estimate of the density of isolated particles of size ℓ in the bulk $\left(\left\langle\tau_{i}\right\rangle, 1 \ll\right.$ $i \ll N-l)$. To do so, we use an approximation from Lakatos and Chou [4], assuming that the number of states of n particles of length l, confined to a length of $N^{\prime} \geq n \ell$ lattice sites, is given by the partition function [5]

$$
\begin{equation*}
Z\left(n, N^{\prime}\right)=\binom{N^{\prime}-(\ell-1) n}{n} \tag{S12}
\end{equation*}
$$

For a given position $i \in\{1, \ldots, \leq N-l\}$, we introduce x_{i}^{-}and x_{i}^{+}as the positions of the closest particles to the left and the right of i, respectively, so we get

$$
\begin{align*}
\left\langle\tau_{i}^{\prime}\right\rangle & =\mathbb{P}\left(\tau_{i}=1, x_{i}^{-}<i-\ell, x_{i}^{+}>i+\ell\right) \\
& =\mathbb{P}\left(\tau_{i}=1\right) \mathbb{P}\left(x_{i}^{-}<i-\ell, x_{i}^{+}>i+\ell \mid \tau_{i}=1\right) \tag{S13}
\end{align*}
$$

Assuming x_{i}^{-}and x_{i}^{+}being independent yields

$$
\left\langle\tau_{i}^{\prime}\right\rangle=\mathbb{P}\left(\tau_{i}=1\right) \mathbb{P}\left(x_{i}^{-}<i-\ell \mid \tau_{i}=1\right) \mathbb{P}\left(x_{i}^{+}>i+\ell \mid \tau_{i}=1\right)
$$

Using (S12), the probability $p_{n, N^{\prime}}^{+}$that $x_{i}^{+}>i+\ell$, conditioned on $\tau_{i}=1$ and there being n particles in the window $\left[i+\ell: i+\ell+N^{\prime}-1\right]$ is

$$
\begin{equation*}
p_{n, N^{\prime}}^{+}=\frac{Z\left(n, N^{\prime}-1\right)}{Z\left(n, N^{\prime}\right)}=\frac{1-\rho \ell}{1-\rho(\ell-1)} \tag{S14}
\end{equation*}
$$

where $\rho=\frac{n}{N^{\prime}}$. When n and N^{\prime} get large and assuming the density of particles in the bulk of the lattice to be approximately constant (denoted $\langle\tau\rangle$), we can replace $p_{n, N^{\prime}}^{+}$and ρ in equation (S14) by $\mathbb{P}\left(x_{i}^{+}>i+\ell \mid \tau_{i}=1\right)$ and $\langle\tau\rangle$, respectively, which gives

$$
\mathbb{P}\left(x_{i}^{+}>i+\ell \mid \tau_{i}=1\right)=\frac{1-\langle\tau\rangle \ell}{1-\langle\tau\rangle(\ell-1)}
$$

Similarly, we obtain $\mathbb{P}\left(x_{i}^{-}<i-\ell \mid \tau_{i}=1\right)=\frac{1-\langle\tau\rangle \ell}{1-\langle\tau\rangle(\ell-1)}$. Combining these relations and replacing $\mathbb{P}\left(\tau_{i}=1\right)$ by $\langle\tau\rangle$ in equation (S13), we obtain that the density of isolated particles in the bulk, simply denoted $\left\langle\tau^{\prime}\right\rangle$, is given by

$$
\begin{equation*}
\left\langle\tau^{\prime}\right\rangle=\langle\tau\rangle\left(\frac{1-\ell\langle\tau\rangle}{1-(\ell-1)\langle\tau\rangle}\right)^{2} \tag{S15}
\end{equation*}
$$

Similarly, for isolation range d, we obtain

$$
\left\langle\tau_{i}^{(d)}\right\rangle \sim \mathbb{P}\left(\tau_{i}=1\right)\left[\frac{Z\left(n, N^{\prime}-d\right)}{Z\left(n, N^{\prime}\right)}\right]^{2}
$$

which simplies to the following expression in the large- N limit:

$$
\left\langle\tau^{(d)}\right\rangle \sim\langle\tau\rangle\left[\frac{1-\ell\langle\tau\rangle}{1-(\ell-1)\langle\tau\rangle}\right]^{2 d}
$$

6 Asymptotics of the ℓ-TASEP

We provide here the asymptotics for the densities and current of the TASEP with extended particles and open boundaries from the mean field model of Lakatos and Chou [4]. The current is given by

$$
J \sim \begin{cases}\frac{1}{(1+\sqrt{\ell})^{2}}, & \text { if } \alpha>\alpha^{*}, \beta>\beta^{*}(\text { MC regime }), \tag{S16}\\ \frac{\alpha(1-\alpha)}{1+(\ell-1) \alpha}, & \text { if } \alpha<\alpha^{*}, \beta>\alpha(\text { LD regime }) \\ \frac{\beta(1-\beta)}{1+(\ell-1) \beta}, & \text { if } \beta<\beta^{*}, \beta<\alpha(\text { HD regime }),\end{cases}
$$

where $\alpha^{*}=\beta^{*}=\frac{1}{1+\sqrt{\ell}}$. The density $\left\langle\tau_{i}\right\rangle$ in the bulk (position $i \in[\ell+1: N-\ell-1]$) is then approximated by

$$
\langle\tau\rangle \sim \begin{cases}\frac{1}{\sqrt{\ell}(\sqrt{\ell}+1)}, & \text { if } \alpha>\alpha^{*}, \beta>\beta^{*} \text { (MC regime) } \\ \frac{1+(\ell-1) J-\sqrt{(1+(\ell-1) J)^{2}-4 \ell J}}{2 \ell}, & \text { if } \alpha<\alpha^{*}, \beta>\alpha \text { (LD regime) } \\ \frac{1+(\ell-1) J+\sqrt{(1+(\ell-1) J)^{2}-4 \ell J}}{2 \ell}, & \text { if } \beta<\beta^{*}, \beta<\alpha \text { (HD regime) }\end{cases}
$$

Using these formulae in (S15) leads to asymptotics for the density of isolated particles.

References

[1] Derrida B, Domany E, Mukamel D (1992) An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. Journal of Statistical Physics 69(3-4):667-687.
[2] Derrida B, Evans MR, Hakim V, Pasquier V (1993) Exact solution of a 1d asymmetric exclusion model using a matrix formulation. Journal of Physics A: Mathematical and General 26(7):1493.
[3] Blythe RA, Evans MR (2007) Nonequilibrium steady states of matrix-product form: a solver's guide. Journal of Physics A: Mathematical and Theoretical 40(46):R333.
[4] Lakatos G, Chou T (2003) Totally asymmetric exclusion processes with particles of arbitrary size. Journal of Physics A: Mathematical and General 36(8):2027.
[5] Buschle J, Maass P, Dieterich W (2000) Exact density functionals in one dimension. Journal of Physics A: Mathematical and General 33(4):L41.
[6] Weinberg DE, et al. (2016) Improved ribosome-footprint and mrna measurements provide insights into dynamics and regulation of yeast translation. Cell Reports 14(7):1787-1799.
[7] Arava Y, et al. (2003) Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences 100(7):3889-3894.

Figure S1: The density of particles in the ℓ-TASEP model. We simulated and plot (in black) the density of particles of the ℓ-TASEP $(\ell=10)$ in the different regimes LD, HD and MC. In red, we plot the estimates of the density in the bulk from Lakatos and Chou [4].

Figure S2: The particle flux in the ℓ-TASEP model in function of α. For different values of β, we compare in function of α the flux obtained from Monte Carlo simulations (same as in Figure 3B) and asymptotic estimates from Lakatos and Chou [4], given by equation (S16).

Figure S3: The plot shows the translation efficiency (the number of ribosomes per codon for each mRNA copy, up to a constant) obtained from ribosome profiling data in S. cerevisiae (Weinberg et al. [6]) against the total ribosome density obtained from polysome profiling (Arava et al. [7]). Applying a linear fit $y=a x$ (plotted in dotted line) to genes with total density less than 1 ribosome per 100 codons gives, with 95% confidence interval, $a=0.82(0.75,0.89)$.

Figure S4: The fraction of isolated particles and interference rate as a function of $\left\langle\tau^{(d)}\right\rangle$. A: For different isolation ranges $d \in\{1, \ldots, 6\}$, we plot the fraction of isolated particles as a function of the average density of isolated particles $\left\langle\tau^{(d)}\right\rangle$, according to (16). Note that for given d, some values of $\left\langle\tau^{(d)}\right\rangle$ can lead to two possible fractions of isolated particles. B: As in A, we plot the isolation rate as a function of the average density of isolated particles $\left\langle\tau^{(d)}\right\rangle$, according to (17). Note that for $\left\langle\tau^{(d)}\right\rangle \leq 0.02$ and all d, the initiation rates associated with the lower branch are very close.

