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Supplementary Methods 

Numerical resolution of the Brownian equation 

Justification of the damped limit 

A general Langevin equation describing the Brownian evolution of a colloidal particle 

reads 

𝒎𝒙 𝒕 = −𝝃 𝒙 𝒕 − 𝒖𝒆 𝒕 −𝑲𝒙 𝒕 + 𝚪(𝒕)            (1) 

with in the present case ξ = 4,5.10-8 N.s.m-1 the Stokes friction coefficient of the bead, 

K = 1,0.10-4 N.m-1 the optical tweezers spring stiffness, ue(t) the external pulsating flow 

of the order of a few mm.s-1, m = 2,1.10-14 kg the mass of a bead of radius 1,5 µm and 

volume mass 1500 kg/m3 (in absence of hydrodynamic corrections). Τ(t) is the random 

noise, or Langevin force. This random force is supposed to be a white, stationary and 

Gaussian noise, with the standard time correlations:  

 
𝚪(𝒕)𝚪(𝒕!) = 𝟐𝒌𝑩𝑻𝝃𝜹 𝒕− 𝒕!           (2) 

The overall process is Markovian. 

Considering now the effect of periodic external force acting on the bead, one observes 

that three different regimes can be distinguished, delimited by two characteristic 

frequencies ωs/(2π) and ωi/(2π). For ξωs = K, the friction force matches the tweezers 

restoring force, while for ξωi = mωi
2 friction and inertia come even. Straightforward 

numerical estimates lead to ωs/(2π)≈ 350 Hz and ωi/(2π)≈340 kHz. 

At low frequencies (f < 300 Hz), the position of the bead x(t) in the optical trap follows 

closely the external drag force ξue(t). At intermediate frequencies 300 < f < 3.105 Hz, the 

friction starts to cut the displacement off. At large frequencies, f > 3.105 Hz, inertia 

dominates and opposes even further the displacement. However, inertia can be safely 

neglected in the range of frequencies f > 104 Hz for which experimental sampling is 

done. Alternatively, one can say that the factor of quality of the mechanical device 

𝑄 = 𝜔! 𝜔! =
𝐾𝑚

𝜉 ≃ 0,03 is low, and inertia play no role at low frequencies. 
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We therefore consider in this work the overdamped, or Smoluchowsky, limit of the 

Langevin equation : 

−𝝃 𝒙 𝒕 − 𝒖𝒆 𝒕 −𝑲𝒙 𝒕 + 𝚪 𝒕 = 𝟎                                                (3)          

 
Numerical resolution of the Langevin equation 
One seeks to solve 

𝒙 𝒕 = 𝒖𝒆 𝒕 − 𝑲
𝝃
𝒙 𝒕 + 𝜞 𝒕

𝝃
= 𝟎                                                                         (4) 

for any arbitrary flow ue. One recognizes in the absence of flow a special instance of the 

exactly solvable Ornstein-Uhlenbeck process. 

General algorithms for numerical solving stochastic differential equations can be found 

in specialized textbooks. Our Langevin equation is linear with additive noise and poses 

no special difficulty. The equation admits the following formal solution 

𝒙 𝒕! = 𝒙′𝒕)𝒆!
𝑲 𝒕!!𝒕

𝝃 + 𝒅𝒔. 𝒆!
𝑲 𝒕!!𝒔

𝝃 𝒖𝒆 𝒔 + 𝒅𝒔. 𝒆!
𝑲 𝒕!!𝒔

𝝃 𝜞(𝒔)𝒕!

𝒕
𝒕!

𝒕           (5) 

The second term expresses the effect of the flow and justifies a numerical approach, 

given the non-trivial expression of ue(t). This formal solution is not restricted to small 

time intervals. Indeed, one is free to choose t and t’ at will, and a natural choice is to 

integrate the equation between t and t + Δt with Δt the sampling time interval. 

In practice, it is convenient to write the equation in terms of dimensionless variables. We 

picked up Tu = ξ/K = 4,5 .10-4 s as time unit, Vu≈u0 = 3,0 mm.s-1 as velocity unit and 

Lu = Vu.Tu = 1,35.10-6 m as length unit. In term of the dimensionless variables 𝑥 = !
!"
,   

𝑡 =  𝑡/𝑇𝑢, 𝑢!  =  𝑢𝑒/𝑉𝑢, the equation becomes 

𝒅𝒙 = 𝒖𝒆 − 𝒙 𝒅𝒕+ 𝟐�𝒅𝑾                                                                  (6) 

where 𝒅 𝑾 is a normalized Wiener process, i.e. a Gaussian random variable of 
vanishing average and variance 𝒅𝒕, while  𝜽 =  𝒌𝑩𝑻

𝑲𝑳𝒖𝟐
 plays the role of dimensionless 

temperature scale. The discrete integration scheme now reads 
 

𝒙(𝒕+ 𝜟𝒕) = 𝒆!𝜟𝒕𝒙 𝒕 + 𝒅𝒔𝜟𝒕
𝟎 . 𝒆!𝒔𝒖𝟎 𝒕+ 𝜟𝒕− 𝒔 + 𝟐𝜽𝜟𝑾(𝒕)             (7) 

A discretisation time Δ𝑡  =  0,1 Δ𝑡 =  4,5 . 10!! 𝑠  is used in our simulations. The 

external flow has the following expression 

𝒖𝒆 = 𝟎.𝟗 𝒕𝒉 𝟑𝒔𝒊𝒏 (𝝅𝒇𝒕) − 𝒕𝒉 𝟑 𝒔𝒊𝒏 𝝅𝒇𝒕− 𝝅 𝟒 𝒆𝒙𝒑 (−𝟎.𝟕𝟗)) + 𝟎.𝟏       (8) 
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with f the heart beat frequency. Each 𝜟𝑾 (𝒕) is an independent Gaussian random 

variable with zero average and variance (1− 𝑒!!!!)/2. Such variables can be obtained 

starting from a uniform pseudo-random variable generator, and using the Box-Mueller 

algorithm, as described in Numerical recipe.  

The integration of the 𝑢! term is done with the Gauss-Legendre sum on 8 points, a good 

compromise between speed and accuracy, which ensures validity so long as Δ𝑡  ∼ 1 and 

𝑢! stays smooth on such a length scale, which is the case in practice (the ow varies only 

on a typical 2 Hz frequency). 

 

Spectral power of the random noise and the trajectories 
To compare the computed trajectories to experimental power spectra obtained using a 

spectral analyzer, we perform fast Fourier transforms (FFT). Sample trajectories x(d)(ti) 

with i = 1…N = 2p points (typically 217 = 131072 points) are acquired and sine-

transformed in order to approximate : 

𝒙 𝒅 𝝎𝒋 = 𝜟𝒕
𝟐𝝅

𝒆𝒙𝒑 −𝒊 𝒋𝒌𝝅
𝑵

𝑵!𝟏
𝒌!𝟎 𝒙 𝒅 (𝒌𝜟𝒕) ≃ 𝟏

𝟐𝝅
𝒅𝒕. 𝒆𝒙𝒑 (−𝒊𝝎𝒋𝒕)𝒙(𝒕)

𝑵𝜟𝒕
𝟎         (9) 

An approximation of the Fourier transformed continuous signal 𝑥 is therefore obtained 

on a discrete set of frequencies 𝜔!  =  𝑗Δ𝜔, equally spaced with interval Δ𝜔 =  2𝜋/(𝑁Δ𝑡). 

We repeat the cycle integration-FFT-integration-FFT . . . between 10 and 1000 times in 

order to average over the noise (here denoted . ). 

The Fourier transform of the continuous noise Τ(t) is 

𝜞 𝝎 = 𝟏
𝟐𝝅

𝒅𝒕. 𝒆!𝒊𝝎𝒕𝜞(𝒕)!
!!                                                                              (10) 

In the absence of external flow, one can write 

𝐱 𝛚 =
𝚪(𝛚)
𝐊+ 𝐢𝛚𝛏 

𝐱(𝛚)𝐱∗(𝛚′) = 𝚪(𝛚)𝚪∗(𝛚!)
𝐊!𝐢𝛚𝛇 𝐊!𝐢𝛚𝛇 ∗

                                                                              (11) 

From the definition of 𝚪(𝛚), one gets 

𝜞(𝝎)𝜞∗(𝝎′) =
𝟏
𝟐𝝅 𝒅𝒕

!

!!
𝒅𝒕

!

!!

!

𝟐𝝃𝒌𝑩𝑻𝜹 𝒕− 𝒕! 𝒆𝒊𝝎!𝒕"!𝒊𝝎𝒕 

=
𝟐𝝃𝒌𝑩𝑻
𝟐𝝅 𝒅𝒕

!

!!
𝒆𝒊(𝝎!!𝝎)𝒕 
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= 𝟐𝝃𝒌𝑩𝑻𝜹(𝝎! −𝝎)   (12) 

In particular, the spectral power of 𝑥 over a narrow frequency interval Δ𝜔 reads 

𝒙 𝝎! 𝒅𝝎′
𝝎!𝜟𝝎

𝝎

𝟐

≈
𝟐𝒌𝑩𝑻𝝃

𝑲𝟐 +𝝎𝟐𝝃𝟐 𝜟𝝎 

The FFT of our discretized time trajectory approximates it in the following way 

Δ𝜔! 𝑥 ! (𝜔!)
!!!!!!!!

!

≈ 𝒙 𝝎! 𝒅𝝎′
𝝎𝟐

𝝎𝟏

𝟐

 

One can alteratively say that the average value 𝑥 ! (𝜔!)
!

 is a numerical 

approximation of (Δ𝜔)!! 𝒙 𝝎! 𝒅𝝎′𝝎𝒊!𝚫𝝎
𝝎𝒊

𝟐
. 

For instance, in the case of a Gaussian white noise in real (SI) units one finds 

𝜟𝝎 𝒙 𝒅 (𝝎𝒋)
𝟐
≈

𝟐𝒌𝑩𝑻𝝃
𝑲𝟐 +𝝎𝟐𝜻𝟐 

 

We notice that the spectral density 2kBTξ/(K2+ω2ζ2) has unit m2.s, while 𝑥 ! (𝜔)
!
 is in 

m2.s2. A frequency interval Δ𝜔 is therefore needed to match both expressions. 


