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Supplemental Experimental Procedures 
Analyzed data 
 

Estimated RNA sequencing (RNA-seq) read counts per transcript isoform were obtained from 

the TCGA data portal  (https://gdc.nci.nih.gov/) for a total of 4442 samples for 11 tumor types: 

breast carcinoma (BRCA), colon adenocarcinoma (COAD), head and neck squamous cell 

carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear-cell carcinoma (KIRC), 

kidney papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung 

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), prostate adenocarcinoma 

(PRAD) and thyroid carcinoma (THCA). Only transcripts with expression TPM > 0.1 were 

considered. Tumor specific mutational and copy-number alteration drivers were collected from 

Intogen (Gundem et al., 2010) and from the TCGA publications for kidney chromophobe (KICH) 
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(Davis et al., 2014) and kidney renal papillary carcinoma (KIRP) (The Cancer Genome Atlas 

Research Network, 2016). This list included a total of 460 unique cancer driver genes, each one 

defined as a tumor-specific driver for one or more tumor types. These genes were annotated as 

oncogenes or tumor suppressors using the annotations provided by COSMIC (Forbes et al., 

2015), Vogelstein et al. (Vogelstein et al., 2013), and by the TSGene database (Zhao et al., 

2015). Unlabeled cases were predicted with OncodriveROLE (Schroeder et al., 2014) using 

cutoffs 0.3 (loss-of-function class) and 0.7 (activating class).  

 

Comparison with stromal and immune signatures 

 

To determine whether the observed switches merely reflected the cellular content of the 

samples, we measured the significant association with stromal and immune cell content using 

ESTIMATE (Yoshihara et al., 2013). For each switch we performed a Wilcoxon test to compare 

the ESTIMATE scores between patients with and without the switch. After correcting for multiple 

testing (Benjamini-Hochberg method), we found 1108 and 473 switches exclusively associated 

(FDR < 0.05) with stromal and immune cell content, respectively; and 306 associated with both. 

These were eliminated from the final set of isoform switches available in Table S1.  

 

Relation between transcript isoform switches and local alternative splicing events 

 

Using SUPPA (Alamancos et al., 2015; Trincado et al., 2016), we calculated the possible local 

alternative splicing events of type alternative 3’ (A3) and 5’ (A5) splice-site, intron retention (RI), 

exon skipping (SE), mutually exclusive exons (MX), alternative first exon (AF) and alternative 

last exon (AL). SUPPA provides for each alternative splicing event the set of transcript isoforms 

that contribute to either form of the event. We thus were able to determine whether each pair of 

isoforms describing a switch corresponded to one or more local alternative splicing events, and 

which of the two forms of the event corresponded to the tumor and the normal isoform. For 

instance, we calculated whether an isoform switch describing an exon cassette (SE) event 

corresponded to an increase or decrease of exon inclusion in the tumor sample. Accordingly, if 

the tumor isoform contained the alternative exon and the normal isoform did not contain it, the 

event would correspond to inclusion in tumor. Similarly, if the tumor isoform did not have the 

exon but the normal isoform did, the event would indicate skipping in the tumor sample. 

 

Recurrence 
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Given the total number of unique switches, S, the number of patients with one or more switches, 

P, and the total number of switches occurring in patients as N, the expected frequency of a 

switch was estimated as f = N/(S·P). We tested the significance of recurrence across patients in 

each tumor type using a binomial test with the observed patient count n and the expected 

frequency f: 

P(n) = N!
n!(N − n)!

f n (1− f )N−n  

Switches were considered significantly recurrent for an adjusted binomial test p-value < 0.05. On 

the other hand, we filtered out switches that were significantly lowly recurrent, i.e. they occurred 

in fewer patients than expected by chance. To measure this, we used the same test as above 

for recurrence. The switch was significantly lowly recurrent if 1-P(n) was significant and the 

expected frequency,  f = N/(S·P) as defined above, was higher than the observed frequency, n/P, 

where n is the number of patients with that switch, and P is the number of patients with one or 

more switches. The cutoff for significance was 0.05 after adjusting for multiple testing, using all 

tumor types. 

 

Functional Switches 

 

From the 8,122 different switches found, for 6,937 (85,41%) of them both isoforms had an 

annotated protein, for 9.01% only the normal isoform had an annotated protein, and for 2.8% 

only the tumor isoform had an annotated protein  (Table S1). A switch was defined as functional 

if both isoforms overlapped in genomic extent, i.e. shared transcribed locus, there was a change 

in the encoded protein (including cases where only one of the isoforms was coding) and 

moreover there was a gain or loss of a protein feature: Pfam domains (Finn et al., 2016) mapped 

with InterProScan (Jones et al., 2014), ProSite patterns (Gattiker et al., 2002); disordered 

regions from IUPred (Dosztanyi et al., 2005); disordered regions potentially involved in protein–

protein interactions from ANCHOR (Dosztanyi et al., 2009). For IUPred and ANCHOR we only 

considered changes involving at least 5 amino acids. Switches for which we could not map any 

protein feature were not considered functional despite the possible difference in coding 

sequences. Significance on the enrichment of protein features losses versus gains was 

calculated by comparing the number of gains and losses in switches with the numbers in 

simulated switches (SS): IUPRED (gains:7702, losses: 14425, SS-gains: 3401162, SS-losses: 

6858382), ANCHOR (gains: 4707, losses: 14425, SS-gains: 2215263, SS-losses: 4512854), 
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Pfam (gains: 699, losses: 3052, SS-gains: 485611, SS-losses: 1421408), ProSite (gains: 605, 

losses: 2296, SS-gains: 331247, SS-losses: 975136).  

 

Enrichment of Domain families in switches and mutations 

 

To determine protein domain families significantly affected by switches we first calculated a 

reference proteome for each tumor type. Using genes with multiple transcripts, we selected 

those that had at least one isoform with TPM>1, and only kept the isoform with the highest 

median expression across the normal samples in the same tissue type. The proteins encoded by 

these isoforms were considered the reference proteome in each tumor type. We aggregated the 

reference proteomes from all tumor types to form a pan-cancer reference proteome. The 

expected frequency f(a) of a protein feature a, e.g. a Pfam domain family, that appears m(a) 

times was then measured as the proportion of this feature in the reference proteome: 

f (a) = m(a)
m(b)

b
∑

 
where b runs over all protein features in the reference proteome, e.g. all Pfam domain families. 

We then calculated the expected probability of a protein feature to be affected by a switch using 

the binomial test: 

P(a) = n!
k!(n− k)!

f (a)k (1− f (a))n−k
 

where k is the number of times feature a was gained or lost in switches and n is the total number 

of feature gains or losses due to switches. We selected cases with Benjamini-Hochberg  (BH) 

adjusted p-value < 0.05. Additionally, to ensure the specificity of the enrichment for each domain 

class, we considered only domain families affected in at least two switches.  

 

To calculate domain families enriched in mutations, we considered the reference proteome in 

each tumor type as before. The expected mutation rate of a domain family a covering the 

proteome a number of amino acids n(a) was considered to be the proportion of this coverage: 

g(a) = n(a)
n(b)

b
∑

 
where b runs over all protein features in the reference proteome. We aggregated all observed 

mutations falling within each domain family and calculated the expected probability of the 

observed mutations using a binomial test as: 
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P(a) = N!
n!(N − n)!

g(a)n (1− g(a))N−n
 

where now n is the number of mutations falling in domain family a, and N is the total number of 

mutations falling in all domain families considered. We kept those cases with a BH adjusted p-

value < 0.05. GO enrichment analysis was performed using DcGO (Fang and Gough, 2013). We 

considered significant those cases with FDR < 0.01 (hypergeometric test).  

 

Mutation and copy number analysis 

 

Mutation information was downloaded from the TCGA data portal for all tumor samples in the 

form of MAF files containing Level 2 somatic mutation calls from whole exome data. Additionally, 

we used somatic mutations from whole genome sequence (WGS) data (Fredriksson et al., 2014) 

for 306 of the samples studied. For copy number alterations (CNAs), as done before (Sebestyén 

et al., 2016), we used CNA regions overlapping at least the full gene locus. We considered a 

CNA loss if the score was smaller than log2(1/2), which means at least 1 copy is lost; and a CNA 

gain, if the score was larger than log2(3/2), which means at least 1 copy is gained.  

 

To measure the association between switches and mutations we measured a Jaccard score. For 

each gene with a switch, given the number of patients with only switches (S), only mutations (M) 

or both (MS), the Jaccard score was defined as MS/(M+S+MS). The Jaccard score calculation 

was carried out using protein-affecting mutations (PAMs) for WES datasets, for all mutation 

types for WGS datasets. In each case we only used patients that had RNA-seq and mutation 

data and we compared the splicing pattern of the patient with its own mutation information. For 

WGS, 306 patients from 8 of the 11 tumor types considered had mutation and RNA-seq data, 

whereas for WES data, 3755 patient samples from all the 11 tumor types analyzed had mutation 

and RNA-seq data. 

 

We also tested mutual exclusion of our isoform switches and the top 10 drivers according to 

their frequency of protein-affecting mutations (PAMs) in each tumor type. We tested the mutual 

exclusion between the patients affected by the switch and the patients with a PAM in at least the 

top three drivers using a one-tailed Fisher’s test (Babur et al., 2015). From this set, we further 

tested mutual exclusion between functional switches with individual mutational drivers in the 

same functional pathway using the same test. These results are provided in Table S3 before 
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multiple test correction. After multiple test correction none of these cases showed significant 

mutual exclusion. 

 

Potential impact of isoform switches in protein interactions with cancer drivers 

 

Functional switches were divided according to whether they occurred in tumor-specific drivers or 

not. For each tumor type we then calculated the proportion of protein-protein interactions (PPIs) 

that were gained, lost, or remained unaffected, and performed a Chi-Square test comparing the 

proportions for the tumor-specific drivers and the rest of genes. Individual Chi-square tests for 

each tumor type: BRCA p-val = 0.001, COAD p-val = 1.3e-17, KICH p-val = 6.4e-33, LUSC p-val 

= 1.1e-7, PRAD p-val = 1.5e-12. The tumor types KIRC, LUAD and THCA showed no 

significance. Samples from KIRP and LIHC had no PPI-affecting switches in drivers. 

 

We further divided functional switches mapped to PPIs according to whether they affected a PPI 

or not. For each tumor type we calculated the proportion of functional switches that occurred in 

cancer drivers, in interactors of drivers, or in other genes, and calculated a Fisher’s exact test 

comparing the PPIs affected by switches in driver-interactors and in other genes mapped to 

PPIs (non-drivers and non-driver-interactors). All cases were significant except for KIRC, LUAD 

and LUSC: BRCA p-val=1.05e-09, OR= 2.2; COAD p-val=4.5-21, OR=1.1; HNSC p-val=9.9e-02, 

OR=1.1; KICH pval=1.6e-35, OR=7.5, KIRC p-val=5.4e-01.3e-41, OR=1.07; KIRP p-val=2.e-21, 

OR=2.7; LIHC p-val=1.08e-28, OR=8.0; LUAD p-val=6.9e-01, OR=1.07; LUSC p-val=1, OR=1; 

PRAD, p-val=8.0e-06, OR=1.6; THCA, p-val=1.3e-27, OR=4.2. 

 

Module and gene-set analysis of the interaction network affected by switches 

 

We considered gene sets consisting of functional and cancer-related pathways (Liberzon et al., 

2015), protein complexes (Ruepp et al., 2009) and complexes related to RNA metabolism 

(Akerman et al., 2015). We calculated the enrichment of PPI-affecting switches in each gene set 

using a Fisher’s exact test based on the separation of switches into being in the gene set or not, 

and affecting PPIs or not (Table S5).  

 

Considering the network formed by the PPIs between genes that are either gained or lost 

through an isoform switch, i.e. we only used the connections that are lost or gained, we 

calculated modules using the multi-level modularity optimization algorithm for finding community 



 7 

structures (Blondel et al., 2008) implemented in the iGraph R package 

(http://igraph.org/r/doc/cluster_louvain.html). For each of the gene sets, we calculated whether it 

was significantly included in any of the modules using a binomial test to estimate the probability 

of finding by chance the observed number of genes with affected PPIs in an arbitrary list of 

genes of the same size as the gene set (Table S6).  

 

Calculation of driver-like properties 

Genes relevant to a given tumor type usually participate in the same pathways and therefore lie 

close to each other in the PPI network, and tend to show high centrality in the network (Jonsson 

and Bates, 2006; Taylor et al., 2009; Wachi et al., 2005). We thus calculated these properties for 

switches predicted as candidate AS-drivers. For each switch from Table S1 in each tumor type 

we calculated the centrality in the consensus PPI network using the degree_centrality() function 

from NetworkX (https://networkx.github.io) (Hagberg et al. 2008). We then compared the 

distribution of centrality values for switches described as AS-drivers and for the rest of functional 

switches, together (Mann-Whitney test p-value < 2.2e-16) or separating candidate AS-drivers 

according to their properties (see Figure S6A). We also considered for each switch from Table 

S1 (AS-driver or not) in each tumor type, what is the distance to the closest tumor-specific gene 

cancer driver, which we call closest driver distance (CDD). Every switch with CDD<=3 we 

labelled it as “Close to a driver”, or “Far from a driver” otherwise. With this, we calculated the 

proportion of AS-drivers and switches non-drivers according to the CDD. 
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RESOURCE TABLE  
 

Resource Source Identifier 

Data 
  

Datasets analyzed (observed 

switches, functional 

implications, links to 

mutational data, etc.)  

This paper  https://zenodo.org/record/824637 

 

 

Supplementary tables with tab 

separated values (.tsv format) 

This paper https://github.com/hclimente/smartas/tre

e/master/results/supplementary_files 

 

Human reference genome 

hg19 assembly 

Genome Reference 

Consortium  

http://hgdownload.cse.ucsc.edu/goldenp

ath/ hg19/chromosomes/  

TCGA level 3 data for RNA-

seq (read counts for isoforms), 

mutation and copy number 

variation (CNV) data for 

BRCA, COAD, HNSC, KICH, 

KIRC, KIRP, LIHC, LUAD, 

LUSC, PRAD, THCA 

TCGA data portal https://gdc-portal.nci.nih.gov/ 

Mutations from whole genome 

sequencing for 306 

samples from BRCA, COAD, 

HNSC, KICH, KIRC, LUAD, 

LUSC, PRAD, THCA 

(Fredriksson et al., 

2014) 

https://www.synapse.org/#!Synapse:syn

2882200 

List of cancer drivers per 

tumor type for BRCA, COAD, 

HNSC, KIRC, LIHC, LUAD, 

(Gundem et al., 

2010)  

https://www.intogen.org/ 
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LUSC, PRAD, THCA 

Cancer drivers for papillary 

renal-cell carcinoma (KIRP) 

(The Cancer 

Genome Atlas 

Research Network, 

2016) 

DOI:10.1056/NEJMoa1505917 

Cancer drivers for 

chromophobe renal-cell 

carcinoma (KICH) 

(Davis et al., 2014) DOI:10.1016/j.ccr.2014.07.014 

COSMIC: list of oncogenes 

and tumor suppressors per 

tumor type 

(Forbes et al., 

2015), 

http://cancer.sanger.ac.uk/cosmic 

TSGene: database of tumor 

suppressors  

(Zhao et al., 2015) https://bioinfo.uth.edu/TSGene/ 

Functional Pathways and 

Gene sets - Molecular 

Signatures Database 

(MSigDB)  

(Liberzon et al., 

2015)  

http://software.broadinstitute.org/gsea/m

sigdb/index.jsp 

Protein complexes (CORUM) (Ruepp et al., 

2009) 

http://mips.helmholtz-

muenchen.de/genre/proj/corum/index.ht

ml 

Complexes related to RNA 

metabolism  

(Akerman et al., 

2015) 

https://www.ncbi.nlm.nih.gov/pubmed/26

047612 

Pfam: protein domain families (Finn et al., 2016) https://www.ebi.ac.uk/services/teams/pfa

m 

ProSite: protein domain 

patterns 

(Gattiker et al., 

2002) 

http://prosite.expasy.org/ 

ArchDB: database of protein (Bonet et al., http://sbi.imim.es/archdb/ 
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loops 2014). 

PSICQUIC: database of 

protein-protein interactions 

(del-Toro et al., 

2013) 

https://www.ucl.ac.uk/functional-gene-

annotation/psicquic 

BIOGRID: database of protein-

protein interactions 

(Chatr-Aryamontri 

et al., 2015) 

https://thebiogrid.org/ 

HumNet: Database of protein-

protein interactions 

(Lee et al., 2011) http://www.functionalnet.org/humannet/a

bout.html 

STRING: database of protein-

protein interactions 

(Szklarczyk et al., 

2011) 

http://string-db.org/ 

Dataset of protein-protein 

interactions 

(Rolland et al., 

2014) 

DOI: http://dx.doi.org/10.1016/j.cell.2014.

10.050 

iPfam: database of domain-

domain interactions 

(Finn et al., 2014) http://ipfam.org/ 

DOMINE: database of domain-

domain interactions 

(Raghavachari et 

al., 2008) 

http://domine.utdallas.edu/cgi-

bin/Domine 

3did: database of domain-

domain interactions 

(Mosca et al., 

2014) 

http://3did.irbbarcelona.org/ 

Software and Algorithms   

Software to calculate isoform 

switches described in this 

work 

This paper https://bitbucket.org/regulatorygenomics

upf/smartas/ 

The software to reproduce the 

analyses carried out on 

isoform switches  

This paper https://github.com/hclimente/smartas  

SUPPA: software for the (Alamancos et al., https://github.com/comprna/SUPPA 
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calculation of alternative 

splicing events 

2015) 

Domain-centric analysis of 

Gene Ontologies  

(Fang and Gough, 

2013) 

http://supfam.org/SUPERFAMILY/dcGO/  

OncodriveROLE: method to 

predict whether a cancer gene 

driver is an oncogene or a 

tumor suppressor 

(Schroeder et al., 

2014)  

http://bg.upf.edu/oncodrive-role 

ESTIMATE: method to 

measure the stromal and 

immune cell content in a 

sample  

(Yoshihara et al., 

2013)  

https://sourceforge.net/projects/estimate

project / 

IUPred: prediction of protein 

disordered regions 

(Dosztanyi et al., 

2005)  

http://iupred.enzim.hu/  

ANCHOR: prediction of 

disordered regions with 

potential for protein-protein 

interactions  

(Dosztanyi et al., 

2009)  

http://anchor.enzim.hu/  

iGraph:  R package to find 

community structures in 

networks  

(Blondel et al., 

2008)  

http://igraph.org/r/doc/cluster_louvain.ht

ml 

NetworkX: software package 

for the study of networks.  

(Hagberg et al., 

2008) 

https://networkx.github.io 

UpSetR: software for plotting 

intersecting sets.  

(Conway et al., 

2017). 

https://cran.r-

project.org/package=UpSetR 
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Supplemental Figures 
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Figure S1. Properties of isoform switches Related to Figure 1. (A) Proportion of local 

alternative splicing event types (y-axis) described by the switches (blue) and by all genes in the 

annotation (red). These proportions are shown for events of type alternative 3’ (A3) and 5’ (A5) 

splice-site, alternative first (AF) and last (AL) exons, mutually exclusive exons (MX), intron 

retention events (RI) and exon cassette events (SE). Significance of the difference was 

determined with a Fisher’s exact test for each event type using a contingency table with the 

counts of each event type and the rest of events in the two sets: switches and annotation (B) For 

each set of local alternative splicing events from the same type mapped to isoform switches, we 

indicate the proportion of cases that correspond to either inclusion (red) or exclusion (blue). For 

instance, inclusion for the A3 and A5 events correspond to the longer form, for AF events to the 

most upstream exon, to the most downstream exon for AL events, to the inclusion of the exon 

with the lowest coordinates for MX events, to the retention of the intron for RI events, and to the 

inclusion of the cassette exon for SE events. Blue corresponds to the opposite 

configuration.Further details of the description of the events can be found in 

https://github.com/comprna/SUPPA (Alamancos et al., 2015). (C) Distributions of the lengths of 

the tumor (purple) and normal (red) protein isoforms in the calculated isoform switches. The y-

axis indicates the number of residues in log10 scale. (D) Overlap graph (Conway et al., 2017) of 

protein features affected in functional switches: Prosite patterns (Prosite), protein loops 

(ArchDB), Pfam domains (Pfam), disordered regions with potential to mediate protein–protein 

interactions (ANCHOR), and general disordered regions (IUPRED). The horizontal bars indicate 

the number of switches affecting each feature. The vertical bars indicate the number of switches 

in each intersection indicated by connected bullet points. (E) Distributions of the lengths of the 

tumor (purple) and normal (red) protein isoforms in the simulated transcript isoform switches. (F) 

Enrichment of functional switches in cancer drivers. We separated all switches (from Table S1) 

according to whether they are cancer drivers or non-drivers (in any tumor type), and whether 

they have functional switches or not. From the 6004 functional switches, ~4% are drivers, 

whereas from the 2118 non-functional switches, ~2% are drivers. Similarly, from all considered 

278 drivers, ~84% are functional, whereas  ~73% of the 7844 non-driver switches are functional. 

A Fisher’s exact test produced a p-value = 2.034e-05 and odds-ratio = 1.965563 for the 

enrichment of functional switches in drivers (95 percent confidence interval:  1.409, 2.799). 
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Figure S2. Properties of functional isoform switches in tumors. Related to Figure 2. (A) 

Proportion of genes in log10 scale (y-axis) with either of these three alterations: isoform switches 

(red), protein-affecting mutations (PAMs) from whole Exome sequencing (WES) data (green), 

and any mutation type from whole genome sequencing (WGS) data (blue). (B) Proportion of 

samples in log10 scale (y-axis) with either of these three alterations: isoform switches (red), 

PAMs from WES data (green), and any mutation type from WGS data (blue). (C-F) Potential 

associations between mutations and switches. We show the top 20 cases according to the 

Jaccard score for the association of mutations (M) and switches (S) using WES (C) and WGS 

(D) data. We also show the top 20 cases according to the number of MS samples for WES (E) 

and WGS (F) data. For each gene and isoform (y axis), we show the number of patients for 

which we observed a mutation only (M), a switch only (S), or the co-occurrence of both (MS). (G) 

Lack of correlation between mutations and switches. For each tumor type, each dot represents a 

sample according to the number of genes with a functional switch (x-axis) and the number of 

genes with protein-affecting mutations (PAMs) (y-axis). (H) Functional switches that potentially 

characterize pan-negative tumor samples. For each switch along the y-axis, we represent the 

proportion of patients from a given tumor type (x-axis) that harbor mutations in a tumor-specific 

mutational driver (M), have the switch (S), or have both (MS). The switches are ranked from the 

bottom of the y-axis according to the total number of patients explained. Only the top 30 cases 

are shown. Each case is color-coded according to tumor type. 
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Figure S3. Protein-protein interaction network. Related to Figure 3. (A) Consensus protein–

protein interaction (PPI) network. We used data from five different sources: PSICQUIC, 

BIOGRID, HumNet, STRING, and (Rolland et al., 2014). These networks vary in their size, 

connectivity, and origin, with PSICQUIC, BIOGRID, and Rolland being experimental networks 

and HumNet and STRING being functional networks. To build our consensus network, we used 

only those interactions that were defined in at least four different networks (shown in orange). 

(B) Fraction of each network included in the consensus network, with the data from (Rolland et 

al., 2014) having over 30% of its interactions and STRING less than 5%. (C) Number of 

interactions from each network included in the consensus network. (D) Degree distribution of the 

consensus network. For each number of PPI connections (x-axis), we give the number of genes 

with this degree (y-axis). (E) Highlighted in red are the PPIs considered for our analysis. Despite 

the fact that the dataset published in Rolland et al. was obtained through a search for new 

protein-protein interactions, many interactions in Rolland et al. are also present in the other PPI 

databases, with only 454 unique to Rolland et al. The plot also shows that even though many 

interactions are only present in STRING, most of them are not taken into account in our analysis. 

Plot performed with UpSetR (Conway et al., 2017). The horizontal bars indicate the number of 

switches for each property. The vertical bars indicate the number of switches in each of the 

intersections indicated by connected bullet points. (F) STRING PPIs included in our analysis 

(present in at least three other databases) are enriched for high-scoring interactions.  
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Figure S4. Protein-protein interactions assignment to functional isoform switches. 

Related to Figure 3. (A) Number of domain–domain interactions (DDIs) analyzed, separated by 

source: 3did, iPfam, DOMINE. The plot shows the number of cases in each source (horizontal 

bars) and the intersections between the sources (vertical bars), which are indicated by 

connected bullet points (B) Mapping of switches to protein-protein interactions (PPIs). Left panel: 

From a total of 29991 PPIs, 11008 of them were mapped to DDIs, 6917 of them in genes with 

switches whereas 4091 are in genes without switches. The rest of the 18983 PPIs did not map 

to DDIs: 11361 corresponded to genes with switches, and 7622 to genes without switches. 

Middle panel: Absolute number of PPI interactions mapped (blue) or not mapped (orange) to a 

DDI in each gene (only genes with at least 10 PPIs are depicted). Genes are sorted according to 

the fraction of interactions that could be mapped to DDIs. The picture shows no correlation 

between the degree of a gene and the fraction of interactions mapped. Right panel: Fraction of 

PPIs mapped to DDIs per gene. Genes are sorted according to the fraction of PPIs successfully 

mapped to DDIs.  
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Figure S5. Properties of switches that affect protein-protein interactions. Related to Figure 

3. Comparison of proportions of functional switches that affect protein-protein interactions 

(PPIs). In the left panel, functional switches are divided according to whether they affect 

domains frequently mutated in cancer (M feature) (Yes) or not (No). In the middle panel, 

functional switches are divided according to whether the switch has significant mutual exclusion 

with tumor-specific drivers (Pannegative). In the right panel, functional switches are divided 

according to whether they are recurrent (Yes) or not (No). In each subset we plot the proportion 

of PPIs that are kept unaffected (gray), lost (red), or gained (green). Using these three 

categories and the two values for each feature, M feature and Pannegative associate frequently 

with PPI-affecting switches (Chi-square test p-value < 2.2e-16 and p-value = 6.8e-08, 

respectively).  
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Figure S6. Potential AS-drivers. Related to Figure 4. (A) We show the distribution of centrality 

values (y axis) for functional isoform switches (x axis), labeled as candidate AS-drivers (n = 

1662), separated according to their properties, and for the rest of functional switches (No AS-

driver) (n = 4342). A Mann-Whitney test comparing all candidate AS-drivers with the rest of 

functional switches (No AS-driver) yielded a p-value < 2.2e-16. Comparing each subset of AS-

drivers with the No AS-driver set yielded p=0.019 for the significantly recurrent AS-drivers 

(Recurrence), p=1.05e-4 for the AS-drivers that affect domains frequently mutated in cancer 

(Affects mutated feature), p=0.0023 for pannegative cases, and 2.70e-151 for cases that affect 

PPIs. (B) We show the proportion of potential AS-drivers and of other switches according to the 

closest driver distance (CDD). CDD is calculated as the distance to the closest tumor-specific 

cancer gene driver in the consensus PPI network. Every switch with CDD<=3 was labeled as 
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“Close to a driver”. Otherwise, it was labeled “Far from a driver”. A Fisher’s exact test on the 

proportion of potential AS-drivers and other isoform changes (no AS-drivers) that are close or far 

from a driver, gave an enrichment of potential AS-drivers close to drivers (p-value < 2.2e-16, 

odds-ratio = 1.5). (C) Each patient is colored by tumor type and represented according to the 

percentage of tumor-specific copy number alteration (CNA) driver genes amplified in that sample 

(y axis) and the percentage of potential AS-drivers occurring in the same sample (x axis). (D) 

Each patient is colored by tumor type and represented according to the percentage of tumor-

specific CNA driver genes amplified in that sample (y axis) and the percentage of mutational 

drivers mutated in the same sample (x axis) 
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Supplementary Tables 
 

Table S1. Isoform switches. Related to Figure 1. Provided as a text file with tab-separated 
values (.tsv). This table contains the list of identified isoform switches used for this analysis, 
including functional and nonfunctional ones, and indicating which ones might be potential AS-
drivers. The table provides the following information: 

Column 
number 

Column label Description 

1 GeneId Entrez gene id 
2 Symbol HGNC gene symbol 
3 Normal_transcript UCSC transcript id 
4 Tumor_transcript UCSC transcript id 
5 Normal_protein Uniprot_ID (None if not known) 
6 Tumor_protein Uniprot_ID (None if not known) 
7 DriverAnnotation “Driver” if it’s a driver, “d1” if it’s an interactor of a driver, and “Nothing” 

otherwise 
8 IsFunctional 1 if it is functional as defined in the article, 0 otherwise 
9 Driver 1 if it is a driver, 0 otherwise 
10 Druggable 1 if it is a target of a known drug according to DGIdb 

(http://dgidb.genome.wustl.edu/) 
11 CDS_Normal 1 if the normal transcript has an annotated CDS, 0 otherwise 
12 CDS_Tumor 1 if the tumor transcript has an annotated CDS, 0 otherwise 
13 CDS_change 1 if the CDS changes between the tumor and normal transcripts 
14 UTR_change 1 if the 5’3 or 3’ UTRs change between the tumor and normal 

transcripts 
15 Tumors Tumor types in which the switch appears (BRCA, COAD, etc…) 
16 Number_samples Number of samples in which the switch appears 
17 Percentage_samples Percentage of samples from the total studied across all tumor types in 

which the switch appears  
18 Samples IDs of samples in which the switch appears 
19 Recurrence 1 if it is recurrent, 0 otherwise 
20 PPI 1 if the switch affects a PPI in every tumor type where it appears; 0 

otherwise. All PPIs affected by switches per tumor type are in Supp. 
File 3. 

21 Affects_mutated_feature 1 if the switch leads to a gain or loss of a domain that is enriched in 
mutations in tumors, 0 otherwise 

22 Pannegative Number of cancer drivers from the same pathway with which the 
switch shows mutual exclusion 

23 Potential_AS_driver 1 if 19,20,21 or 22 is equal to 1, 0 otherwise 
24 MS.pam Samples with co-occurrence of switch and PAM in the same gene 
25 M.pam Samples with PAMs only 
26 S.pam Samples with Switches 
27 N.pam Rest of samples 
28 p.pam.me p-value of the mutual exclusion test 
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29 MS.mut Samples with co-occurrence of switch and WGS mutations 
30 M.mut Samples with WGS mutations only 
31 S.mut Samples with Switches 
32 N.mut Rest of samples 
33 p.mut.o p-value of the co-occurrence of mutations and switches 
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Table S2. Mutation and domain gain/loss enrichments in protein domain families. Related 
to Figure 2. Provided as a text file with tab-separated values (.tsv). This table contains the 
information about the Protein domain families that are significantly enriched in mutations as well 
as gains or losses in isoform switches. The information provided for each domain family is the 
following: 

Column number Column label Description 
1 Pfam_id PFAM ID for the domain family 
2 Name Name of the domain family 
3 p_switch_gain P-value for the gain-test 
4 adjp_switch_gain Adjusted P-value for the gain-test 
5 p_switch_loss P-value for the loss-test 
6 adjp_switch_loss Adjusted P-value for the loss-test 
7 p_mutation P-value for the mutation-test 
8 adjp_mutation Adjusted P-value for the mutation-test 
9 Switches_where_gained Number of switches where domain family is gained 
10 Switches_where_lost Number of switches where domain family is lost 
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Table S3. Mutual exclusion analysis between switches and cancer drivers. Related to 
Figure 2. Provided as a text file with tab-separated values (.tsv). This table contains the analysis 
of mutual exclusion between functional switches, global mutual exclusion, and mutational drivers 
in the same pathway, local mutual exclusion. Switches present global mutual exclusion if they 
exhibit an extreme mutually exclusive pattern (p_mut_ex < 0.05) with at least 3 of the most 
frequent tumor drivers for a certain cancer type (Number_ME_drivers >= 3). Switches present 
local mutual exclusion if they exhibit an extreme mutually exclusive pattern 
(p_me_pathway_driver < 0.05) with a driver from the same pathway (indicated in 
Same_pathway_driver). . 
 
Column number Column label Description 
1 GeneId Entrez gene ID 
2 Symbol HGNC gene symbol 
3 Normal_transcript UCSC transcript id 
4 Tumor_transcript UCSC transcript id 
5 Tumor Tumor type (BRCA, COAD, etc…) 
6 p_mut_ex P-value for the test for mutual exclusion (ME) with 

mutational drivers 
7 Number_ME_drivers Number of drivers with mutual exclusion (ME) 
8 MS_mut_ex Number of samples with mutation (M) and switch (S) 
9 M_mut_ex   Number of samples with only M 
10 S_mut_ex Number of samples with only S 
11 N_mut_ex         Number of samples without M or S 
12 ME_drivers       HGNC gene symbols for the ME drivers 
13 Same_pathway_driver      Pathways shared with ME drivers 
14 p_me_pathway_driver      P-value for the test for mutual exclusion (ME) with 

drivers in the same pathway 
15 MS_me_pathway_driver     Number of samples with mutation (M) and switch (S) 
16 M_me_pathway_driver      Number of samples with only M 
17 S_me_pathway_driver      Number of samples with only S 
18 N_me_pathway_driver Number of samples without M or S 
 
Table S4. Protein features and protein-protein interactions affected by isoform switches. 
Related to Figure 3. Provided as a text file with tab-separated values (.tsv). This table contains 
the proteins features and protein–protein interactions affected in each functional switch. The 
column descriptions are: 
Column 
number 

Column label Description 

1 Tumor Tumor type (BRCA, COAD, etc…) 
2 GeneId Entrez gene ID 
3 Symbol HGNC gene symbol 
4 Normal_transcript UCSC transcript id 
5 Tumor_transcript UCSC transcript id 
6 Feature_type Pfam, Prosite, IUPRED, ANCHOR 
7 Feature_id ID for the protein feature if available 
8 Feature_name Name of Feature if available, positions in protein for IUPRED and 
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ANCHOR 
9 Observation Gained_in_tumor/Lost_in_tumor/No_change 
10 Normal_isoform_order Domain copy this corresponds to / total copies in normal isoform 
11 Tumor_isoform_order Domain copy this corresponds to / total copies in tumor isoform 
12 GeneId_partner Entrez ID of the protein-protein interaction partner 
13 Symbol_partner HGNC symbol of the protein-protein interaction partner 
14 Transcript_partner Transcripts identified as coding the interaction partner 
15 Pfam_id_partner PFAM ID for the domain mediating the interaction 
16 Effect_on_interaction Unaffected/Gain/Loss/NA(no interaction data) 
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Table S5. Pathways enriched in PPI-affecting switches. Related to Figure 3. Provided as a 
text file with tab-separated values (.tsv). This table contains the gene sets that are enriched in 
isoform switches that are predicted to affect protein-protein interactions. The enrichment tests is 
a Fisher’s exact test based on the separations of switches being in the pathway or not, and 
affecting PPIs or not. We have tested Pathways, Complexes and gene sets-related to mRNA-
metabolism. Only Pathways showed enrichment after multiple-test correction. The column 
descriptions are: 

Column 
number 

Column label Description 

1 Geneset_type Pathway/Complex/mRNA_regulation 
2 Geneset Name of the gene set 
3 Number_drivers Number of drivers in the gene set.  
4 p Fisher’s exact test p-value 
5 adjp p-value corrected for multiple testing 
6 OR Odds-ratio  
7 eOR Estimated odds-ration using with pseudocounts  
8 Switched_genes Genes in the gene set that have a PPI-affecting switch 
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Table S6. Gene modules with protein-protein interactions affected by isoform switches. 
Related to Figure 3. Provided as a text file with tab-separated values (.tsv). This table contains 
modules with high density of affected interactions: sets of genes that are connected in the 
network of protein-protein interactions and many of their interactions are affected by the isoform 
switches and separately from other genes in the PPI network. We provide a test for assigning a 
complex or pathway based on the intersection of the complex/pathway to the module (see 
Experimental Procedures for details). The column descriptions are: 
Column 
number 

Column label Description 

1 Module Module number  
2 Module_components Genes in the module (calculated from the network of protein-

protein interactions affected by isoform switches) 
3 Geneset Name of complex/pathway compared to the module (NA if none 

was assigned) 
4 Geneset_size Number of genes in the complex/pathway (NA if none was 

assigned) 
5 p p-value from binomial test for the intersection of the gene set 

(Complex/Pathway) to the module 
6 Intersection Number of genes from the gene set that are in the module 
7 Number_drivers Number of cancer drivers in the module 
8 padj p-value corrected for multiple testing 
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