Supplemental Information

Supplemental Results

A genetic screen for TRN neurite growth defects

Previous studies had identified several components needed for proper TRN outgrowth: UNC-6/Netrin (Hedgecock et al., 1990), LIN-44/Wnt proteins (Hilliard and Bargmann, 2006), and a few other signaling molecules (Du and Chalfie, 2001). To systematically search for genes involved in the regulation of neurite growth, we performed an extensive genetic screen to isolate mutants with defects in TRN neurite extension. We mutagenized a strain (TU4069) carrying the *uIs134* transgene, which allows RFP expression from the TRN-specific mec-17 promoter, and screened the progeny of individual F1 animals representing 20,200 haploid genomes. Although we focused on isolating mutants whose TRNs had morphological defects, we also obtained mutants with abnormal numbers of fluorescently labeled cells. This screen yielded 80 mutants. We identified the phenotype-causing mutations for 62 mutants; the remaining mutants either were of low penetrance (7) or did not yield a confirmable mutation by whole genome sequencing (11). The characterized mutations represented 26 genes. Mutations in 8 genes caused the loss of TRN marker expression or its expression in extra cells, and mutations in 2 genes specifically affected the development of the postembryonic AVM and PVM neurons (Table S3); most of these mutant phenotypes were previous described and thus are not discussed here. Mutations in the remaining 16 genes resulted in various TRN neurite extension defects, which were organized into seven phenotypic categories (A-G, Table S4). This screen is likely to be near saturation because 1) the number of haploid genomes examined is 10 times the reciprocal of the average mutation rate (5×10^{-4}) for null alleles (Brenner, 1974); and 2) nine of the ten genes represented by multiple alleles had three or more alleles.

The 16 genes whose products regulate neurite outgrowth and guidance (Table S4) encode proteins that affect either extracellular signaling to the TRNs, intracellular signaling, or effectors that are directly involved in cytoskeleton rearrangement and growth cone movement. Molecules affecting extracellular signaling include the guidance protein LIN-44/Wnt and its receptor LIN-17/Frizzled, and three proteins, UNC-23, MUA-3, and SUP-26 not acting within the TRNs. PLM neurites in *lin-44* and *lin-17* mutants failed to navigate towards the anterior (category D) because of the repellent activity of the Wnt signal (Hilliard and Bargmann, 2006; Zheng *et al.*, 2015a). *unc-23* (category G) and *mua-3* (category B) are only expressed in muscle cells (Bercher *et al.*, 2001; Papsdorf *et al.*, 2014), and their mutant phenotypes could not be rescued by TRN-specific expression of the wild-type gene. Similarly, mutations in *sup-26* (category B), which encodes a RNA-binding protein and is expressed in most somatic cells (Mapes *et al.*, 2010), could not be rescued by TRN-specific expression of the wild-type gene. We have not investigated how these molecules affect neurite outgrowth and guidance in a non-cell autonomous manner.

Genes encoding molecules that are presumably involved with intracellular signaling include *unc-51, mec-15, dsh-1, egl-5, unc-73*, and *tiam-1. unc-51* encodes a serine/threonine-protein kinase; mutation of *unc-51* caused general outgrowth and guidance defects (category A; Du and Chalfie, 2001). *mec-15*, which is needed for touch sensitivity (Au and Chalfie, 1989), encodes a F-box protein with WD repeats and so is likely to mediate ubiquitination and protein degradation (category E; Bounoutas *et al.*, 2009). Mutation of *mec-15* caused shortening of both PLM neurites. We previously reported that DSH-1/Dishevelled (category B) negatively modulates the activity of Wnt signaling to allow posterior outgrowth against the Wnt gradients (Zheng *et al.*, 2015a) and that *egl-5* (category B), which encodes a Abd-B-like Hox transcription factor, promotes PLM differentiation by inducing the

growth of PLM-PN and at least one downstream effector (Zheng *et al.*, 2015b). We also identified guanine nucleotide exchange factors (GEFs) [UNC-73/Trio (category E) and TIAM-1 (category B)], which controls neurite extension towards the anterior and posterior, respectively (Zheng *et al.*, 2016).

We also found several downstream effectors of directional neurite outgrowth, which are the presumed targets of extracellular and intracellular signaling. Those effectors include tubulin isotypes (MEC-7/ β -tubulin, MEC-12/ α -tubulin, and TBA-7/ α -tubulin) and kinesin motor proteins (KLP-7 and KLP-11). Their alleles isolated in this screen are shown in Table S4.

Supplemental Tables

Table S1. Missense mutations in human α and β tubulins that caused neurological disorders in heterozygous patients.

Gene name	Mutation	Structural function	Corpus Callosum	Reference
	I5L	Tubulin folding	hypoplastic CC	Jansen et al., 2011
	E55K	Lumen-facing loop	partial ACC	Morris-Rosendahl et al., 2008
	T56M	Lumen-facing loop	complete ACC	Bahi-Buisson et al., 2014
	L70S	GTP binding	complete ACC	Cushion et al., 2013
	P72S	Intradimer interaction	hypoplastic CC	Bahi-Buisson et al., 2014
	L92V	Lumen-facing loop	complete ACC	Kumar <i>et al.</i> , 2010
	N101S	GTP binding	complete ACC	Bahi-Buisson et al., 2014
	E113K	Lateral interaction	Normal	Bahi-Buisson et al., 2014
	R123C	Lateral interaction	Normal	Bahi-Buisson et al., 2014
	V137D	Tubulin folding	partial ACC	Kumar <i>et al.</i> , 2010
	S158L	Tubulin folding	complete ACC	Bahi-Buisson et al., 2014
	Y161H	Lateral interaction	hypoplastic CC	Poirier <i>et al.</i> , 2013
	I188L	Tubulin folding	partial ACC	Poirier <i>et al.</i> , 2007
	Y210C	Intradimer interaction	hypoplastic CC	Jansen et al., 2011
	R214H	Intradimer interaction	complete ACC	Bahi-Buisson et al., 2014
	D218Y	Intradimer interaction	complete ACC	Kumar <i>et al.</i> , 2010
TUBA1A	I219V	Intradimer interaction	partial ACC	Oegema et al., 2015
	V235L	Tubulin folding	hypoplastic CC	Poirier <i>et al.</i> , 2013
	I238V	Tubulin folding	complete ACC	Fallet-Bianco et al., 2008
	D249H	Longitudinal interaction	complete ACC	Poirier <i>et al.</i> , 2007
	P263T	MAP binding	complete ACC	Fallet-Bianco et al., 2008
	R264H	MAP binding	complete ACC	Bahi-Buisson et al., 2014
	R264C	MAP binding	Normal	Poirier <i>et al.</i> , 2007
	A270T	Tubulin folding	complete ACC	Kumar <i>et al.</i> , 2010
	L286F	Lateral interaction	complete ACC	Fallet-Bianco et al., 2008
	V303G	Tubulin folding	partial ACC	Lecourtois et al. 2010
	R320H	Tubulin folding	partial ACC	Bahi-Buisson et al., 2014
	K326N	Longitudinal interaction	complete ACC	Bahi-Buisson et al., 2014
	N329S	Longitudinal interaction	complete ACC	Kumar et al., 2010
	A333V	Longitudinal interaction	hypoplastic CC	Cushion et al., 2013
	V353I	Longitudinal interaction	partial ACC	Bahi-Buisson et al., 2014
	G366R	Lumen-facing loop	partial ACC	Okumura <i>et al</i> . 2013
	A369T	Lumen-facing loop	hypoplastic CC	Bahi-Buisson et al., 2014

	V371E	Lumen-facing loop	complete ACC	Bahi-Buisson et al., 2014
	M377V	Tubulin folding	partial ACC	Kumar et al., 2010
	A387V	MAP binding	hypoplastic CC	Romaniello et al., 2012
	R390C	MAP binding	complete ACC	Kumar et al., 2010
	R390H	MAP binding	partial ACC	Zanni et al. 2013
	D396Y	MAP binding	partial ACC	Bahi-Buisson et al., 2014
	L397P	MAP binding	partial ACC	Bahi-Buisson et al., 2008
	R402L	MAP binding	mild hypoplastic CC	Sohal et al., 2012
	R402C	MAP binding	normal	Kumar et al., 2010
	R402H	MAP binding	normal	Kumar et al., 2010
	V409A	MAP binding	complete ACC	Bahi-Buisson et al., 2014
	V409I	MAP binding	hypoplastic CC	Bahi-Buisson et al., 2014
	S419L	MAP binding	partial ACC	Poirier et al., 2007
	R422H	MAP binding	partial ACC	Kumar et al., 2010
	R422C	MAP binding	hypoplastic CC	Bahi-Buisson et al., 2008
	M425K	MAP binding	complete ACC	Kumar et al., 2010
	E429Q	MAP binding	complete ACC	Bahi-Buisson et al., 2014
	G436R	MAP binding	hypoplastic CC	Bahi-Buisson et al., 2008
	G13A	Tubulin folding	normal	Oegema et al., 2015
	G98R	GTP binding	complete ACC	Cushion et al., 2013
	L117P	Tubulin folding	normal	Guerrini et al., 2012
	G140A	GTP binding	complete ACC	Romaniello et al., 2012
	P171T	GTP binding	partial ACC	Bahi-Buisson et al., 2014
	S172P	GTP binding	complete ACC	Jaglin et al., 2009
	P173L	GTP binding	complete ACC	Bahi-Buisson et al., 2014
	I202T	Tubulin folding	partial ACC	Bahi-Buisson et al., 2014
	L207P	Tubulin folding	complete ACC	Cushion et al., 2013
TUBB2B	I210T	Tubulin folding	partial ACC	Jaglin et al., 2009
	L228P	Tubulin folding	complete ACC	Jaglin et al., 2009
	C239F	Intradimer interaction	complete ACC	Bahi-Buisson et al., 2014
	R241H	Intradimer interaction	normal	Bahi-Buisson et al., 2014
	A248T	Intradimer interaction	normal	Bahi-Buisson et al., 2014
	D249H	Intradimer interaction	complete ACC	Bahi-Buisson et al., 2014
	N256S	Intradimer interaction	hypoplastic CC	Guerrini et al., 2012
	F265L	Tubulin folding	partial ACC	Jaglin et al., 2009
	S278G	Lateral interaction	partial ACC	Bahi-Buisson et al., 2014
	T312M	Tubulin folding	hypoplastic CC	Jaglin et al., 2009
	G369V	Lumen-facing loop	partial ACC	Bahi-Buisson et al., 2014

	R380S	MAP binding	complete ACC	Cushion et al., 2013
	R380C	MAP binding	complete ACC	Cushion et al., 2013
	R380L	MAP binding	complete ACC	Amrom et al., 2014
	D417N	MAP binding	normal	Guerrini et al., 2012
	R46G	Intradimer interaction	hypoplastic CC	Bahi-Buisson et al., 2014
	R62Q	Tubulin folding	normal	Tischfield et al., 2010
	G71R	Tubulin folding	partial ACC	Whitman <i>et al.</i> , 2016
	G82R	Tubulin folding	partial ACC	Poirier et al., 2010
	G98S	Longitudinal interaction	hypoplastic CC	Whitman <i>et al.</i> , 2016
	T178M	GTP binding	complete ACC	Poirier et al., 2010
	E205K	Tubulin folding	hypoplastic CC	Poirier et al., 2010
	R262C	MAP binding	partial ACC	Tischfield et al., 2010
	R262H	MAP binding	partial ACC	Tischfield et al., 2010
TUBB3	E288K	Lateral interaction	hypoplastic CC	Oegema et al., 2015
	A302T	MAP binding	partial ACC	Tischfield et al., 2010
	A302V	MAP binding	hypoplastic CC	Poirier et al., 2010
	M323V	Intradimer interaction	partial ACC	Poirier et al., 2010
	P357L	Tubulin folding	normal	Oegema et al., 2015
	R380C	MAP binding	partial ACC	Tischfield et al., 2010
	M388V	MAP binding	complete ACC	Poirier et al., 2010
	E410K	MAP binding	partial ACC	Tischfield et al., 2010
	D417N	MAP binding	partial ACC	Tischfield et al., 2010
	D417H	MAP binding	N/A	Tischfield et al., 2010

51 TUBA1A, 24 TUBB2B, and 19 TUBB3B mutations are listed. The mutated amino acids were mapped to the structural domains of α/β heterodimer and their potential structural functions were assigned according to Tischfield *et al.* (2011). Residues located in the interior of the structure were generally assigned to the category of "tubulin folding." Effects on the corpus callosum (CC) were used as an indicator of defects in axon growth and guidance. These phenotypes were extracted from the cited literature. ACC stands for agenesis of the corpus callosum.

Table S2. Loss-of-function alleles of α and β tubulin genes (other than *mec-12* and *mec-7*) and their effects on TRN morphology.

Gene	Allele	TRN morphology
tba-1	ok1123	Normal
tba-1	ok1135	Normal
tba-1	or346	Normal
tba-1	or594	Normal
tba-2	sb51	Normal
tba-2	sb25	Normal
tba-5	tm4200	Normal
tba-7	gk787939	Ectopic ALM-PN
tba-7	u1015	Ectopic ALM-PN
tba-8	tm4359	Normal
tba-9	ok1858	Normal
ben-1	e1880	Normal
tbb-1	gk207	Normal
tbb-2	t1623	Normal
tbb-2	gk130	Normal
tbb-4	sa127	Normal
tbb-4	ok1461	Normal
tbb-6	tm2004	Normal

Table S3. Mutations that affect the expression pattern of TRN marker or the development of the postembryonic AVM and PVM cells.

	Gene	Allele	Phenotype	Recessivity	Penetr-	Molecular	Reference
	name	name	тпепотуре	Recessivity	ance	Lesion	Kelerence
i	Mutation	ns resulting in t	he absence of TRN maker				
			Lack of PLM, AVM,				Mitani <i>et al.</i> ,
	lin-32	u909	and PVM labeling	recessive	58%		1993
			Lack of PLM, AVM,				
	cdk-4	u948	and PVM labeling	recessive	88%	Q18*	
					35%		
	mec-4	u947; u972	Degeneration of TRNs	recessive	(<i>u</i> 947)	A513T	
	mec-4						Driscoll and
		u951	Degeneration of TRNs	dominant	65%	A713T	Chalfie, 1991
	mec-10	u1025	Degeneration of TRNs	recessive	10%	G312R	
ii	Mutation	ns resulting in t	he expression of TRN mark	ters in extra cel	ls		
			Expression of TRN				Wu et al.,
	egl-46	u945	marker in FLPs	recessive	65%		2001
			Expression of TRN				Wu et al.,
	egl-44	u965	marker in FLPs	recessive	79%		2001
		u920; u949;	Expression of TRN		90%		Jia <i>et al</i> .,
	pag-3	u961	marker in BDUs	recessive	(<i>u</i> 920)		1996
			Expression of TRN				Feng et al.,
	egl-13	u964	marker in A/PQRs	recessive	68%	H389Y	2013
iii	Mutation	ns resulting in d	levelopmental defects in A	VM/PVM			
			PVM is mispositioned				Harris et al.,
	egl-20	u999	anteriorly	recessive	82%	V92D	1996
			Ventral guidance				Hedgecock et
			defects for AVM				al., 1990
	unc-6	u1018	neurites	recessive	61%	C346Y	

References indicate that similar mutant phenotypes for the gene were previously reported. cdk-4 was not previously known to affect TRN development. Although they each have the same underlying defect, u947 and u972 were independently isolated. These two alleles and mec-10(u1025) identify novel changes that cause TRN degeneration.

	Gene	Allele name	Recessivity	Penet-	Molecular	Reference
	name	Anele name	Recessivity	rance	Lesion	
А	Mutations	s that shorten all TRN neuri	tes			
		u910	dominant	100%	P356L	
		u911	dominant		P171S	
	mec-7	u955	dominant		A352T	
	mec-7	u956	dominant		P358L	
		u957	dominant		P171L	
		<i>u</i> 958	dominant		G244S	
	unc-51	u1000	recessive	80%	E188K	Du and Chalfie, 2001
В	Mutations	s that shorten the PLM-PN				
	mec-7	u1020	recessive		G34S	
		u1019	dominant		G354E	
	12	u950	recessive		S140F	
	mec-12	u1016	recessive		E97K	
		u1021	recessive		G144S	
		u915	recessive	95%	R165Stop	Zheng et al., 2015a
	dsh-1	<i>u</i> 952	recessive		G512R	-
		u953	recessive		R103Stop	-
		u914	recessive	98%	R570Stop	Zheng et al., 2016
		u1003	recessive			-
	tiam-1	<i>u1004</i>	recessive		R420Stop	-
		u1005	recessive		Q846Stop	-
		<i>u1012</i>	recessive		Q266Stop	-
	egl-5	u918; u966	recessive	100%		Zheng et al., 2015b
	тиа-3	u973	recessive	45%	C2191Y	
	sup-26	u916	recessive	81%	G95Stop	
С	Mutations	that result in an ectopic AI	LM-PN		•	
	mec-12	u917	recessive	38%	V260I	
	mec-7	u1017	recessive	83%	L377F	
	tba-7	u1015	recessive	79%	G92D	
D	Mutations	s that shorten PLM-AN and	elongate PLM	-PN		
				90%		Hilliard and Bargmann,
	lin-44	u905; u906; u907; u959	recessive	(<i>u</i> 905)		2006; Zheng et al., 2015a
				75%		Hilliard and Bargmann,
	lin-17	u919; u960; u962; u963	recessive	(u919)		2006; Zheng et al., 2015a
Е	Mutations	that shorten both PLM-AN	and PLM-PN			
	mec-15	u1008	recessive	83%	Q194Stop	
F	Mutations	that shorten ALM-AN and	PLM-AN			
						Du and Chalfie, 2001;
	unc-73	u908	recessive	85%	E1212K	Zheng et al., 2016

Table S4. Mutations that cause neurite outgrowth or guidance defects in TRNs.

		u913	recessive	90%	Q261Stop	Hekimi and Kershaw,
	unc-53	u912; u946; u967;				1993
	unc-35	u968; u969; u970;				
		u971; u974	recessive			
	klp-11	u1024	recessive	79%	Q53Stop	
G	Mutations	that shorten ALM-AN but	not PLM-AN			
	unc-23	u1022	recessive	82%	Q132Stop	

References indicate that the similar mutant phenotypes for the gene were either previously reported or we

extensively characterized the mutants elsewhere.

Supplemental Figures

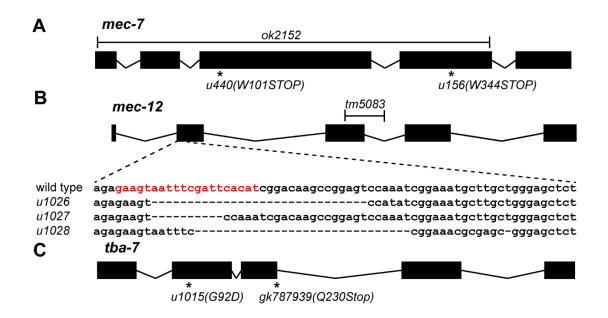


Figure S1. Gene structures for *mec-7*, *mec-12*, and *tba-7* and the molecular lesions in various putative null alleles. *u1026*, *u1027*, and *u1028* were created using CRISPR/Cas9-mediated genome editing and guide RNAs designed to target exon 2 of *mec-12*. Frameshift-causing deletions were identified by genotyping. The *tm5083* mutation deletes part of exon 3 and intron 3 of *mec-12* and also causes a frameshift.

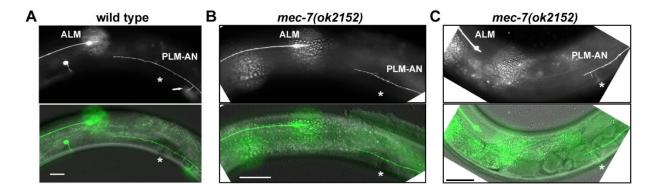


Figure S2. The loss of MEC-7 causes PLM-AN branching defects. uIs31[mec-17p::GFP] was used to examine the TRN morphology. (A) In the wild-type animals, PLM-AN extends beyond the vulva (asterisk) and sends out a synaptic branch at a position posterior to the vulva; the branch extends to reach the ventral nerve cord. (B-C) PLM-AN is slightly shorter in mec-7 (ok2152lf) animals, although it still extends beyond the vulva (asterisk). However, PLM-AN fails to form a synaptic branch (B) or could not fully extend the branch at the correct position (C). Scale bar = 20 µm.

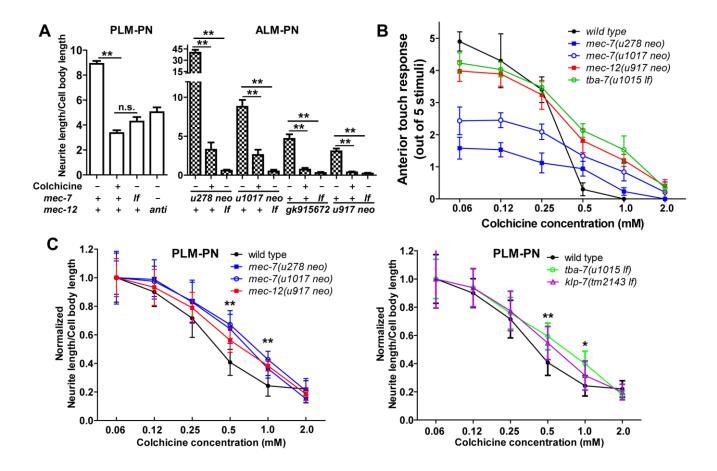


Figure S3. *mec-7(neo)* and *mec-12(neo)*, *tba-7(lf)*, and *klp-7(lf)* mutants have increased resistance to colchicine. (A) The comparison of PLM-PN length in wild type animals treated with 1 mM colchicine with *mec-7(ok2152 lf)* and *mec-12(u1021 anti)* mutants. (B) Anterior touch response of adult animals grown on plate containing different concentrations of colchicine from the first larval (L1) stage. (C) The normalized length of PLM-PN of adults grown on plates with colchicine from the L1 stage. PLM-PN lengths of animals treated with 0.06 mM colchicine (9.0 for wild type, 13.3 for *u278*, 10.0 for *u1017*, 10.1 for *u917*, 11.0 for *u1015*, and 10.5 for *tm2143*) were used to set as the reference for the normalization. Asterisks indicate the differences among the means were statistically significant in ANOVA tests (one asterisk indicates p < 0.05 and two for p < 0.01).

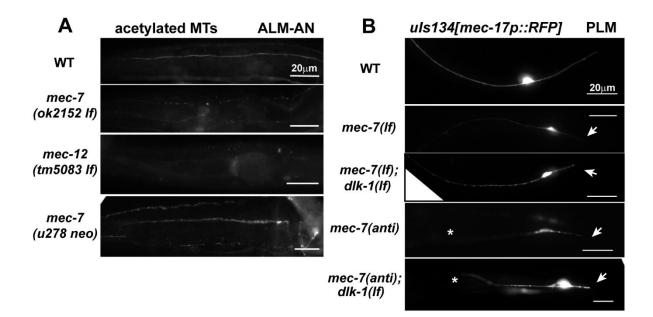


Figure S4. MT acetylation and RFP fluorescence in *mec-7* and *mec-12* mutants. (A) Representative images of ALM-AN stained by anti-acetylated α -tubulin antibodies [6-11B-1] in the wild type animals and the indicated mutants. (B) The fluorescent intensity of RFP expressed from the transgene *uIs134[mec-17p::GFP]* in the wild type animal, *mec-7(ok2152 lf)* mutants, and *mec-7(ok2152 lf); dlk-1(ju476)* double mutants, as well as *mec-7(u957 anti)* mutants and *mec-7(u957 anti); dlk-1(ju476)* double mutants. Images were collected using the same exposure time and laser intensity to allow the comparison of fluorescent intensity. *dlk-1* mutation enhanced RFP level in the *mec-7* mutants but did not rescue the neurite growth defects. Arrows point to the shortened PLM-PN and asterisks indicate the terminating position of the shortened PLM-AN. Scale bar = 20 µm.

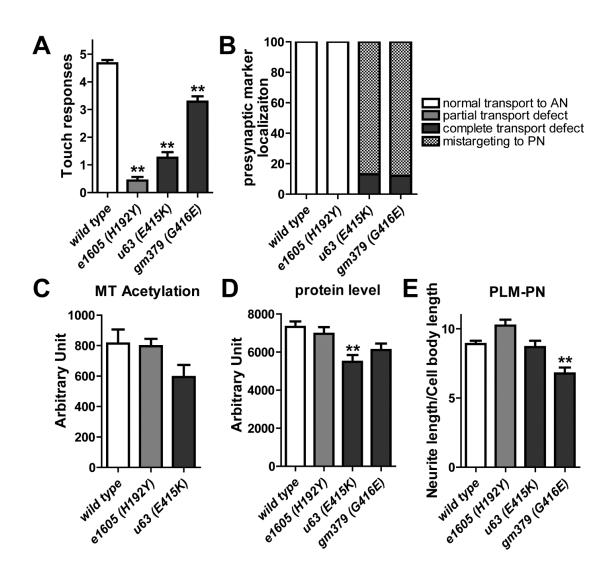


Figure S5. *mec-12* alleles that specifically affect touch sensitivity or synaptic vesicle transport. (A) Anterior touch response (out of five stimuli) of the *mec-12* alleles. (B) Percentage of PLM cells showing transport defects or mistargeting of the presynaptic marker RAB-3::GFP. (C) Immunofluorescent intensity of staining using anti-acetylated α -tubulin antibodies. (D) Fluorescent intensity of RFP expressed from the transgene *uIs134[mec-17p::RFP]* crossed into the *mec-12* mutants. Arbitrary units were used in C and D. (E) The length of the PLM-PN in some *mec-12* mutants. Asterisks indicate significant differences (p < 0.01) from the wild type animals.

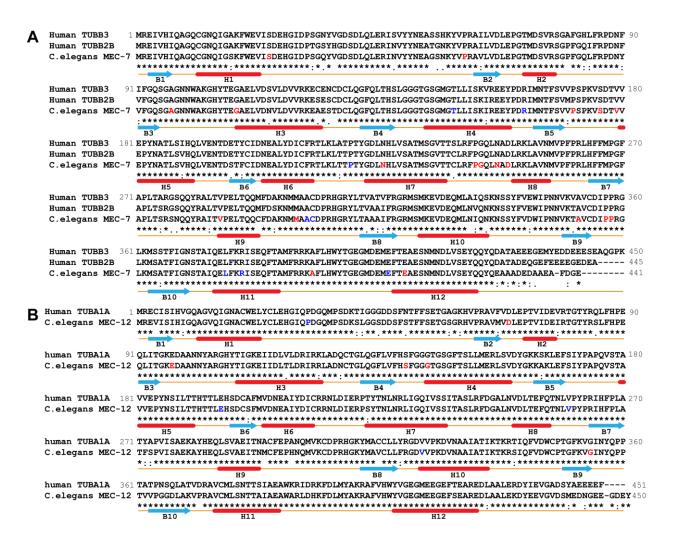


Figure S6. Sequence alignment of MEC-7 with human TUBB3 and TUBB2B (A) and alignment between MEC-12 and TUBA1A (B). Regions predicted to be α -helices (H1 to H12) or β -strands (B1 to B10) by the α/β tubulin dimer structure (1jff.pdb; Nogales *et al.*, 1998) were labeled. Amino acids that were changed in *mec-7* or *mec-12 anti* and *neo* mutants were labeled in red and blue, respectively.

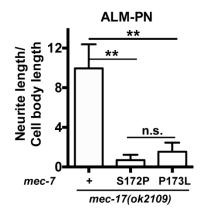


Figure S7. Both *mec-7[u1056* (S172P)] and *mec-7[u1057* (P173L)] mutation suppressed the growth of ALM-PN in *mec-17(ok2109 lf)* mutants.

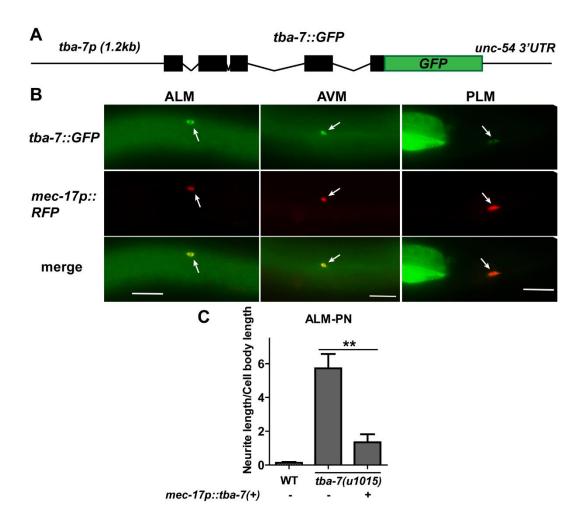


Figure S8. TBA-7 is expressed and acts cell-autonomously in the TRNs. (A) A schematic representation of the *tba-7::GFP* reporter, containing a 1.2 kb promoter and the entire coding region.
(B) The expression of *tba-7::GFP* in the TRNs, which are also labeled by *mec-17p::RFP*. Arrows point to the cell bodies of TRNs. The posterior intestine also showed strong GFP signal (the rightmost panel). (C) The length of ALM-PN in *tba-7(u1015 lf)* mutants that carried a rescuing array that expressed wild-type *tba-7* in the TRNs specifically.

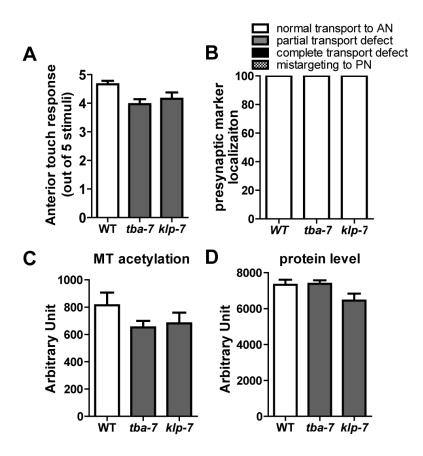


Figure S9. Touch sensitivity, presynaptic vesicle localization, tubulin acetylation level, and protein expression level of tba-7(u1015 lf) and klp-7(tm2143 lf) mutants. No significant differences between these mutants and wild type were found.

Α	\downarrow	
TBA-8	MPSDGRECVSIHIGQAGAQIGNACWELYCIEHGLDEAGFLKEEEK-NKKQQSLQAFFS	57
TBA-6	MPQYKGSREVISIHVGQAGVQIGNACWELFCLEHGIQPDGYHVEDDTYDEETETINTFFA	60
TBA-5	MREIVSIHIGQAGVQIGNACWELYCLEHGITPDGLMPDDTSYGVEDQSYNTFFS	54
TBA-9	-MVNNRSREVISIHVGOAGVOMGNACWELYCLEHGIOPDGMINEEDSLGVDDDSFNTFFS	59
TBA-7	MREVISIHVGQAGVQIGNACWELYCLEHGILPDGTSMEPDGNSGSLGTFFS	51
MEC-12	MREVISIHIGQAGVQIGNACWELYCLEHGIQPDGQMPSDKSLGGSDDSFSTFFS	54
TBA-4	MREVISIHVGOAGVOIGNACWELYCLEHGIOPDGTMPSEOONEGGSFTTFFS	52
TBA-1	-MFVFNMREVISIHVGQAGVQIGNACWELYCLEHGIQPDGTMPSDQQADGESFTTFFS	57
TBA-2	MREVISIHVGQAGVQIGNACWELYCLEHGIQPDGTMPTQSTNEGESFTTFFS	52
	** :***:****:*:*****:*:****************	
TBA-8	EGEFMEARDDLAALEKDYAEVSRDTADLEEENDEF 452	
TBA-6	EGEFSEAREDMAALEKDYEEIGEDELPDDIDDQSYRGRSSGSRY 464	
TBA-5	EGEFSEAREDMAALEKDYEEVGVDSFDPNDEEY 447	
TBA-9	EGEFSEAREDLAALEKDYEEVGLDAGEPDEEDDYSHY 456	
TBA-7	EGEFSEAREDLAALEKDYEEVGADSDANDNGDDEY 444	
MEC-12	EGEFSEAREDLAALEKDYEEVGVDSMEDNG-EEGDEY 450	
TBA-4	EGEFTEAREDLAALEKDYEEVGADSNEGL-EEDGEEY 448	
TBA-1	EGEFTEAREDLAALEKDYEEVGADSNEGGNEEEGEEY 454	
TBA-2	EGEFTEAREDLAALEKDYEEVGADSNEGGEE-EGEEY 448	
	**** ***:*:****** *:. *	
_		
В		
B TUBAL3	₩ MRECLSIHIGQAGIQIGDACWELYCLEHGIQPNGVVLDTQQDQLENAKMEHTNASFDTFF	60
	₩ MRECLSIHIGQAGIQIGDACWELYCLEHGIQPNGVVLDTQQDQLENAKMEHTNASFDTFF MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFF	60 53
TUBAL3		
TUBAL3 TUBA8	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFF	53
TUBAL3 TUBA8 TUBA3C	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF	53 53 53 53
TUBAL3 TUBA8 TUBA3C TUBA3D	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF	53 53 53
TUBAL3 TUBA8 TUBA3C TUBA3D TUBA3E	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISVHVGQAGVQMGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF	53 53 53 53 53 53 53
TUBAL3 TUBA8 TUBA3C TUBA3D TUBA3E TUBA4A TUBA1A TUBA1B	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISVHVGQAGVQMGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF	53 53 53 53 53 53 53 53
TUBAL3 TUBA8 TUBA3C TUBA3D TUBA3E TUBA4A TUBA1A	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISVHVGQAGVQMGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF	53 53 53 53 53 53 53
TUBAL3 TUBA8 TUBA3C TUBA3D TUBA3E TUBA4A TUBA1A TUBA1B	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISVHVGQAGVQMGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF	53 53 53 53 53 53 53 53
TUBAL3 TUBA8 TUBA3C TUBA3D TUBA3E TUBA4A TUBA1A TUBA1B TUBA1C	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF *** :*:*:*****:*:****** :* ARECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF *** :* :*: ***	53 53 53 53 53 53 53 53
TUBAL3 TUBA8 TUBA3C TUBA3D TUBA3E TUBA4A TUBA1A TUBA1B TUBA1C TUBAL3 TUBA8	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSD	53 53 53 53 53 53 53 53
TUBAL3 TUBA8 TUBA3C TUBA3D TUBA3E TUBA4A TUBA1A TUBA1B TUBA1C TUBAL3 TUBA8 TUBA3C	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFF MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSD	53 53 53 53 53 53 53 53
TUBAL3 TUBA8 TUBA3C TUBA3D TUBA3E TUBA4A TUBA1A TUBA1B TUBA1C TUBAL3 TUBA8 TUBA3C TUBA3D	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQMGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFKITKITKTIGGGDDSFNTFFKITKITKTIGGGDDSFNTFF <t< th=""><th>53 53 53 53 53 53 53 53</th></t<>	53 53 53 53 53 53 53 53
TUBAL3 TUBA8 TUBA3C TUBA3D TUBA3E TUBA4A TUBA1A TUBA1B TUBA1C TUBAL3 TUBA8 TUBA3C TUBA3D TUBA3E	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFKITKITKTIGGGDDSFNTFFKITKITKTIGGGDDSFNTFF <t< th=""><th>53 53 53 53 53 53 53 53</th></t<>	53 53 53 53 53 53 53 53
TUBAL3 TUBA8 TUBA3C TUBA3D TUBA3E TUBA4A TUBA1A TUBA1B TUBA1C TUBAL3 TUBA8 TUBA3C TUBA3D TUBA3E TUBA4A	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISVHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISVHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFKITKITKTIGGGDDSFNTFFKITKITKTIGGGDSFNTFF <td< th=""><th>53 53 53 53 53 53 53 53</th></td<>	53 53 53 53 53 53 53 53
TUBAL3 TUBA8 TUBA3C TUBA3D TUBA3E TUBA4A TUBA1A TUBA1B TUBA1C TUBAL3 TUBA3C TUBA3C TUBA3E TUBA3E TUBA4A TUBA1A	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVGNCWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVGNCWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFKTISIHVGQAGVQIGNCWELYCUGVSVEAEAEEGKTIGGGDDSFNTFFKINALKNYKINALKNYKTIGGGDDSFNTFFKINALKNYKINALKNYKTIGGGDSFNTFF <th>53 53 53 53 53 53 53 53</th>	53 53 53 53 53 53 53 53
TUBAL3 TUBA8 TUBA3C TUBA3D TUBA3E TUBA4A TUBA1A TUBA1B TUBA1C TUBAL3 TUBA3C TUBA3C TUBA3D TUBA3E TUBA4A TUBA1A TUBA1B	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVGNSVEAEAEEGKTIGGGDDSFNTFFKKTKTKKTKTKKTKTKKTKTKKTKTKKTKTKKTKT<	53 53 53 53 53 53 53 53
TUBAL3 TUBA8 TUBA3C TUBA3D TUBA3E TUBA4A TUBA1A TUBA1B TUBA1C TUBAL3 TUBA3C TUBA3C TUBA3E TUBA3E TUBA4A TUBA1A	MRECISVHVGQAGVQIGNACWELFCLEHGIQADGTFDAQASKINDDDSFTTFFMRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVGNCWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFMRECISIHVGQAGVGNCWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFKTISIHVGQAGVQIGNCWELYCUGVSVEAEAEEGKTIGGGDDSFNTFFKINALKNYKINALKNYKTIGGGDDSFNTFFKINALKNYKINALKNYKTIGGGDSFNTFF <td>53 53 53 53 53 53 53 53</td>	53 53 53 53 53 53 53 53

Figure S10. Sequence alignment of all *C. elegans* α -tubulin proteins (A) and all human α -tubulin proteins (B). Only the N-terminal and C-terminal sequences were shown. The arrow points to Q31 residue.

References

Amrom, D., Tanyalcin, I., Verhelst, H., Deconinck, N., Brouhard, G.J., Decarie, J.C., Vanderhasselt, T., Das, S., Hamdan, F.F., Lissens, W., Michaud, J.L., and Jansen, A.C. (2014). Polymicrogyria with dysmorphic basal ganglia? Think tubulin! Clin Genet *85*, 178-183.

Bahi-Buisson, N., Poirier, K., Boddaert, N., Saillour, Y., Castelnau, L., Philip, N., Buyse, G., Villard, L., Joriot, S., Marret, S., Bourgeois, M., Van Esch, H., Lagae, L., Amiel, J., Hertz-Pannier, L., Roubertie, A., Rivier, F., Pinard, J.M., Beldjord, C., and Chelly, J. (2008). Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations. J Med Genet *45*, 647-653.

Bahi-Buisson, N., Poirier, K., Fourniol, F., Saillour, Y., Valence, S., Lebrun, N., Hully, M., Bianco, C.F., Boddaert, N., Elie, C., Lascelles, K., Souville, I., Consortium, L.I.-T., Beldjord, C., and Chelly, J. (2014). The wide spectrum of tubulinopathies: what are the key features for the diagnosis? Brain *137*, 1676-1700.

Bercher, M., Wahl, J., Vogel, B.E., Lu, C., Hedgecock, E.M., Hall, D.H., and Plenefisch, J.D. (2001). mua-3, a gene required for mechanical tissue integrity in Caenorhabditis elegans, encodes a novel transmembrane protein of epithelial attachment complexes. J Cell Biol *154*, 415-426.

Bounoutas, A., Zheng, Q., Nonet, M.L., and Chalfie, M. (2009). mec-15 encodes an F-box protein required for touch receptor neuron mechanosensation, synapse formation and development. Genetics *183*, 607-617, 601SI-604SI.

Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.

Cushion, T.D., Dobyns, W.B., Mullins, J.G., Stoodley, N., Chung, S.K., Fry, A.E., Hehr, U., Gunny, R., Aylsworth, A.S., Prabhakar, P., Uyanik, G., Rankin, J., Rees, M.I., and Pilz, D.T. (2013). Overlapping cortical malformations and mutations in TUBB2B and TUBA1A. Brain *136*, 536-548.

Driscoll, M., and Chalfie, M. (1991). The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature *349*, 588-593.

Du, H., and Chalfie, M. (2001). Genes regulating touch cell development in Caenorhabditis elegans. Genetics *158*, 197-207.

Fallet-Bianco, C., Loeuillet, L., Poirier, K., Loget, P., Chapon, F., Pasquier, L., Saillour, Y., Beldjord, C., Chelly, J., and Francis, F. (2008). Neuropathological phenotype of a distinct form of lissencephaly associated with mutations in TUBA1A. Brain *131*, 2304-2320.

Feng, G., Yi, P., Yang, Y., Chai, Y., Tian, D., Zhu, Z., Liu, J., Zhou, F., Cheng, Z., Wang, X., Li, W., and Ou, G. (2013). Developmental stage-dependent transcriptional regulatory pathways control neuroblast lineage progression. Development *140*, 3838-3847.

Guerrini, R., Mei, D., Cordelli, D.M., Pucatti, D., Franzoni, E., and Parrini, E. (2012). Symmetric polymicrogyria and pachygyria associated with TUBB2B gene mutations. Eur J Hum Genet *20*, 995-998.

Harris, J., Honigberg, L., Robinson, N., and Kenyon, C. (1996). Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position. Development *122*, 3117-3131.

Hedgecock, E.M., Culotti, J.G., and Hall, D.H. (1990). The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron *4*, 61-85.

Hekimi, S., and Kershaw, D. (1993). Axonal guidance defects in a Caenorhabditis elegans mutant reveal cell-extrinsic determinants of neuronal morphology. The Journal of neuroscience : the official journal of the Society for Neuroscience *13*, 4254-4271.

Hilliard, M.A., and Bargmann, C.I. (2006). Wnt signals and frizzled activity orient anterior-posterior axon outgrowth in C. elegans. Developmental cell *10*, 379-390.

Jaglin, X.H., Poirier, K., Saillour, Y., Buhler, E., Tian, G., Bahi-Buisson, N., Fallet-Bianco, C., Phan-Dinh-Tuy, F., Kong, X.P., Bomont, P., Castelnau-Ptakhine, L., Odent, S., Loget, P., Kossorotoff, M., Snoeck, I., Plessis, G., Parent, P., Beldjord, C., Cardoso, C., Represa, A., Flint, J., Keays, D.A., Cowan, N.J., and Chelly, J. (2009). Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat Genet *41*, 746-752.

Jansen, A.C., Oostra, A., Desprechins, B., De Vlaeminck, Y., Verhelst, H., Regal, L., Verloo, P., Bockaert, N., Keymolen, K., Seneca, S., De Meirleir, L., and Lissens, W. (2011). TUBA1A mutations: from isolated lissencephaly to familial polymicrogyria. Neurology *76*, 988-992.

Jia, Y., Xie, G., and Aamodt, E. (1996). pag-3, a Caenorhabditis elegans gene involved in touch neuron gene expression and coordinated movement. Genetics *142*, 141-147.

Kumar, R.A., Pilz, D.T., Babatz, T.D., Cushion, T.D., Harvey, K., Topf, M., Yates, L., Robb, S., Uyanik, G., Mancini, G.M., Rees, M.I., Harvey, R.J., and Dobyns, W.B. (2010). TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Hum Mol Genet *19*, 2817-2827.

Lecourtois, M., Poirier, K., Friocourt, G., Jaglin, X., Goldenberg, A., Saugier-Veber, P., Chelly, J., and Laquerriere, A. (2010). Human lissencephaly with cerebellar hypoplasia due to mutations in TUBA1A: expansion of the foetal neuropathological phenotype. Acta Neuropathol *119*, 779-789.

Mapes, J., Chen, J.T., Yu, J.S., and Xue, D. (2010). Somatic sex determination in Caenorhabditis elegans is modulated by SUP-26 repression of tra-2 translation. Proceedings of the National Academy of Sciences of the United States of America *107*, 18022-18027.

Mitani, S., Du, H., Hall, D.H., Driscoll, M., and Chalfie, M. (1993). Combinatorial control of touch receptor neuron expression in Caenorhabditis elegans. Development *119*, 773-783.

Morris-Rosendahl, D.J., Najm, J., Lachmeijer, A.M., Sztriha, L., Martins, M., Kuechler, A., Haug, V., Zeschnigk, C., Martin, P., Santos, M., Vasconcelos, C., Omran, H., Kraus, U., Van der Knaap, M.S., Schuierer, G., Kutsche, K., and Uyanik, G. (2008). Refining the phenotype of alpha-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly. Clin Genet *74*, 425-433.

Nogales, E., Wolf, S.G., and Downing, K.H. (1998). Structure of the alpha beta tubulin dimer by electron crystallography. Nature *391*, 199-203.

Oegema, R., Cushion, T.D., Phelps, I.G., Chung, S.K., Dempsey, J.C., Collins, S., Mullins, J.G., Dudding, T., Gill, H., Green, A.J., Dobyns, W.B., Ishak, G.E., Rees, M.I., and Doherty, D. (2015). Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes. Hum Mol Genet *24*, 5313-5325.

Okumura, A., Hayashi, M., Tsurui, H., Yamakawa, Y., Abe, S., Kudo, T., Suzuki, R., Shimizu, T., Shimojima, K., and Yamamoto, T. (2013). Lissencephaly with marked ventricular dilation, agenesis of corpus callosum, and cerebellar hypoplasia caused by TUBA1A mutation. Brain Dev *35*, 274-279. Papsdorf, K., Sacherl, J., and Richter, K. (2014). The balanced regulation of Hsc70 by DNJ-13 and UNC-23 is required for muscle functionality. The Journal of biological chemistry *289*, 25250-25261. Poirier, K., Keays, D.A., Francis, F., Saillour, Y., Bahi, N., Manouvrier, S., Fallet-Bianco, C., Pasquier, L., Toutain, A., Tuy, F.P., Bienvenu, T., Joriot, S., Odent, S., Ville, D., Desguerre, I., Goldenberg, A., Moutard, M.L., Fryns, J.P., van Esch, H., Harvey, R.J., Siebold, C., Flint, J., Beldjord, C., and Chelly, J. (2007). Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A). Hum Mutat *28*, 1055-1064. Poirier, K., Saillour, Y., Bahi-Buisson, N., Jaglin, X.H., Fallet-Bianco, C., Nabbout, R., Castelnau-Ptakhine, L., Roubertie, A., Attie-Bitach, T., Desguerre, I., Genevieve, D., Barnerias, C., Keren, B., Lebrun, N., Boddaert, N., Encha-Razavi, F., and Chelly, J. (2010). Mutations in the neuronal ss-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum Mol Genet *19*, 4462-4473.

Poirier, K., Saillour, Y., Fourniol, F., Francis, F., Souville, I., Valence, S., Desguerre, I., Marie Lepage, J., Boddaert, N., Line Jacquemont, M., Beldjord, C., Chelly, J., and Bahi-Buisson, N. (2013). Expanding the spectrum of TUBA1A-related cortical dysgenesis to Polymicrogyria. Eur J Hum Genet *21*, 381-385. Romaniello, R., Tonelli, A., Arrigoni, F., Baschirotto, C., Triulzi, F., Bresolin, N., Bassi, M.T., and Borgatti, R. (2012). A novel mutation in the beta-tubulin gene TUBB2B associated with complex malformation of cortical development and deficits in axonal guidance. Dev Med Child Neurol *54*, 765-769.

Sohal, A.P., Montgomery, T., Mitra, D., and Ramesh, V. (2012). TUBA1A mutation-associated lissencephaly: case report and review of the literature. Pediatr Neurol *46*, 127-131.

Tischfield, M.A., Baris, H.N., Wu, C., Rudolph, G., Van Maldergem, L., He, W., Chan, W.M., Andrews, C., Demer, J.L., Robertson, R.L., Mackey, D.A., Ruddle, J.B., Bird, T.D., Gottlob, I., Pieh, C., Traboulsi, E.I., Pomeroy, S.L., Hunter, D.G., Soul, J.S., Newlin, A., Sabol, L.J., Doherty, E.J., de Uzcategui, C.E., de Uzcategui, N., Collins, M.L., Sener, E.C., Wabbels, B., Hellebrand, H., Meitinger, T., de Berardinis, T., Magli, A., Schiavi, C., Pastore-Trossello, M., Koc, F., Wong, A.M., Levin, A.V., Geraghty, M.T., Descartes, M., Flaherty, M., Jamieson, R.V., Moller, H.U., Meuthen, I., Callen, D.F., Kerwin, J.,

Lindsay, S., Meindl, A., Gupta, M.L., Jr., Pellman, D., and Engle, E.C. (2010). Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell *140*, 74-87.

Tischfield, M.A., Cederquist, G.Y., Gupta, M.L., Jr., and Engle, E.C. (2011). Phenotypic spectrum of the tubulin-related disorders and functional implications of disease-causing mutations. Curr Opin Genet Dev *21*, 286-294.

Whitman, M.C., Andrews, C., Chan, W.M., Tischfield, M.A., Stasheff, S.F., Brancati, F., Ortiz-Gonzalez, X., Nuovo, S., Garaci, F., MacKinnon, S.E., Hunter, D.G., Grant, P.E., and Engle, E.C. (2016). Two unique TUBB3 mutations cause both CFEOM3 and malformations of cortical development. Am J Med Genet A *170A*, 297-305.

Wu, J., Duggan, A., and Chalfie, M. (2001). Inhibition of touch cell fate by egl-44 and egl-46 in C. elegans. Genes & development *15*, 789-802.

Zanni, G., Colafati, G.S., Barresi, S., Randisi, F., Talamanca, L.F., Genovese, E., Bellacchio, E., Bartuli, A., Bernardi, B., and Bertini, E. (2013). Description of a novel TUBA1A mutation in Arg-390 associated with asymmetrical polymicrogyria and mid-hindbrain dysgenesis. Eur J Paediatr Neurol *17*, 361-365. Zheng, C., Diaz-Cuadros, M., and Chalfie, M. (2015a). Dishevelled attenuates the repelling activity of Wnt signaling during neurite outgrowth in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America *112*, 13243-13248.

Zheng, C., Diaz-Cuadros, M., and Chalfie, M. (2015b). Hox Genes Promote Neuronal Subtype Diversification through Posterior Induction in Caenorhabditis elegans. Neuron *88*, 514-527. Zheng, C., Diaz-Cuadros, M., and Chalfie, M. (2016). GEFs and Rac GTPases control directional specificity of neurite extension along the anterior-posterior axis. Proceedings of the National Academy of Sciences of the United States of America *113*, 6973-6978.