
Supplementary methods

Numerical resolution of the Brownian equation

Justification of the damped limit

A general Langevin equation describing the Brownian evolution of a colloidal particle reads

mẍ(t) = −ξ[ẋ(t)− ue(t)]−Kx(t) + Γ(t) (1)

with in the present case ξ = 4.5 × 10−8 N.s.m−1 the Stokes friction coefficient of the bead,
K = 1.0× 10−4 N.m−1 the optical tweezers spring stiffness, ue(t) the external pulsating flow of
the order of a few mm.s−1, m = 2.1× 10−14 kg the mass of a bead of radius 1.5 µm and volume
mass 1500 kg/m (in absence of hydrodynamic corrections).

Γ(t) is the random noise, or Langevin force. This random force is supposed to be a white,
stationary and Gaussian noise, with the standard time correlations [1] :〈

Γ(t)Γ(t′)
〉

= 2kBTξδ(t− t′) (2)

The overall process is Markovian.
Considering now the effect of periodic external force acting on the bead, one observes that

three different regimes can be distinguished, delimited by two characteristic frequencies ωs/(2π)
and ωi/(2π). For ξωs = K, the friction force matches the tweezers restoring force, while for
ξωi = mω2

i friction and inertia come even. Straightforward numerical estimates lead to ωs/(2π) '
350 Hz and ωi/(2π) ' 340 kHz.

At low frequencies (f < 300 Hz), the position of the bead x(t) in the optical trap follows
closely the external drag force ξue(t). At intermediate frequencies 300 < f < 3 × 105 Hz, the
friction starts to cut the displacement off. At large frequencies, f > 3×105 Hz, inertia dominates
and opposes even further the displacement. However, inertia can be safely neglected in the range
of frequencies f < 104 Hz for which experimental sampling is done. Alternatively, one can say
that the factor of quality of the mechanical device Q =

√
ωs/ωi =

√
Km/ξ ' 0.03 is low, and

inertia play no role at low frequencies.
We therefore consider in this work the overdamped, or Smoluchowsky, limit of the Langevin

equation :
− ξ[ẋ(t)− ue(t)]−Kx(t) + Γ(t) = 0. (3)

Numerical resolution of the Langevin equation

One seeks to solve

ẋ(t) = ue(t)−
K

ξ
x(t) +

Γ(t)

ξ
= 0 (4)

for any arbitrary flow ue. One recognizes in the absence of flow a special instance of the exactly
solvable Ornstein-Uhlenbeck process [1].

General algorithms for numerically solving stochastic differential equations can be found in
specialized textbooks, e.g. [2]. Our Langevin equation is linear with additive noise and pose no
special difficulty. The equation admits the following formal solution

x(t′) = x(t)e−K(t′−t)/ξ +

∫ t′

t
ds e−K(t′−s)/ξue(s) +

∫ t′

t
ds e−K(t′−s)/ξΓ(s) (5)
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The second term expresses the effect of the flow and justifies a numerical approach, given the
non-trivial expression of ue(t). This formal solution is not restricted to small time intervals.
Indeed, one is free to choose t and t′ at will, and a natural choice is to integrate the equation
between t and t+ ∆t with ∆t the sampling time interval.

In practice, it is convenient to write the equation in terms of dimensionless variables. We
picked up Tu = ξ/K = 4.5 × 10−4 s as time unit, Vu ' u0 = 3.0 mm.s−1 as velocity unit and
Lu = Vu×Lu = 1.35× 10−6 m as length unit. In term of the dimensionless variables x̃ = x/Lu,
t̃ = t/Tu, ũe = ue/Vu, the equation becomes

dx̃ = (ũe − x̃)dt̃+
√

2θdW̃ (6)

where dW̃ is a normalized Wiener process, i.e. a Gaussian random variable of vanishing
average and variance dt̃, while θ = kBT

KLu2 plays the role of dimensionless temperature scale. The
discrete integration scheme now reads

x̃(t̃+ ∆t̃) = e−∆tx̃(t) +

∫ ∆t̃

0
ds̃ e−s̃ũe(t̃+ ∆t̃− s̃) +

√
2θ∆W̃ (t̃) (7)

A discretisation time ∆t̃ = 0.1 (∆t = 4.5× 10−5 s) is used in our simulations. The external
flow involves an hyperbolic tangent function, and has the following expression

ũe =
ue
u0

= 0.9|tanh{3 sin(πft)} − tanh{3 sin(πft− π/4)} exp(−0.79))|+ 0.1. (8)

with f the heart beat frequency. Each ∆W̃ (t̃) is an independent Gaussian random variable with
zero average and variance (1−e−2∆t̃)/2. Such variables can be obtained starting from a uniform
pseudo-random variable generator, and using the Box-Mueller algorithm, as described in [3].

The integration of the ũe term is done with a Gauss-Legendre sum on 8 points, a good
compromise between speed and accuracy, which ensures validity so long as ∆t̃ ∼ 1 and ũ0 stays
smooth on such a length scale, which is the case in practice (the flow varies only on a typical
2 Hz frequency).

Spectral power of the random noise and the trajectories

To compare the computed trajectories to experimental power spectra obtained using a
spectral analyzer, we perform fast Fourier transforms (FFT). Sample trajectories x(d)(ti) with
i = 1 . . . N = 2p points (typically 217 = 131072 points) are acquired and sine-transformed in
order to approximate :

x̂(d)(ωj) =
∆t√
2π

N−1∑
k=0

exp

(
−ijkπ

N

)
x(d)(k∆t) ' 1√

2π

∫ N∆t

0
dt exp(−iωjt)x(t) (9)

An approximation of the Fourier transformed continuous signal x̂ is therefore obtained on a
discrete set of frequencies ωj = j∆ω, equally spaced with interval ∆ω = 2π/(N∆t). We repeat
the cycle integration-FFT-integration-FFT . . . between 10 and 1000 times in order to average
over the noise (here denoted 〈.〉).

The Fourier transform of the continuous noise Γ(t) is

Γ̂(ω) =
1√
2π

∫ ∞
−∞

dt e−iωtΓ(t) (10)
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In the absence of external flow, one can write

x̂(ω) =
Γ̂(ω)

K + iωξ

〈
x̂(ω)x̂∗(ω′)

〉
=

〈
Γ̂(ω)Γ̂∗(ω′)

〉
(K + iωξ)(K + iωξ)∗

(11)

From the definition of Γ̂(ω), one gets〈
Γ̂(ω)Γ̂∗(ω′)

〉
=

1

2π

∫ ∞
−∞

dt

∫ ∞
−∞

dt′ 2ξkbTδ(t− t′)eiω
′t′−iωt

=
2ξkbT

2π

∫ ∞
−∞

dt ei(ω
′−ω)t

= 2ξkbTδ(ω
′ − ω) (12)

In particular, the spectral power of x̂ over a narrow frequency interval [ω1, ω2] reads〈∣∣∣∣∫ ω2

ω1

x̂(ω′)dω′
∣∣∣∣2
〉
' 2kBTξ

K2 + ω2
1ξ

2
(ω2 − ω1) (13)

The FFT of our discretised time trajectory, with ∆ω the sampling frequency interval, approximates
it in the following way

∆ω2

〈∣∣∣∣∣ ∑
ω1<ωi<ω2

x̂(d)(ωj)

∣∣∣∣∣
2〉
'

〈∣∣∣∣∫ ω2

ω1

x̂(ω′)dω′
∣∣∣∣2
〉

(14)

One can alternatively say that the average value
〈
|x̂(d)(ωj)|2

〉
is a numerical approximation

of (∆ω)−2

〈∣∣∣∫ ωj+∆ω
ωj

x̂(ω′)dω′
∣∣∣2〉.

For instance, in the case of a Gaussian white noise in real (SI) units one finds

∆ω

〈∣∣∣x̂(d)(ωj)
∣∣∣2〉 ' 2kBTξ

K2 + ω2
j ξ

2
(15)

We notice that the spectral density 2kBTξ/(K
2 + ω2ξ2) has unit m2.s, while |x̂(d)(ω)|2 is in

m2.s2. A frequency interval ∆ω is therefore needed to match both expressions. The combination
appearing in the left hand side of the above equation is invariant with respect to changes in the
sampling frequency, and is used in the presence of an external flow as well.

Références

[1] C.W. Gardiner. Handbook of Stochastic Methods for Physics,Chemistry and the Natural
Sciences. Springer-Verlag, 1985.

[2] P.E. Kloeden and E. Platen. The Numerical Solution of Stochastic Differential Equations.
Springer-Verlag, 1999.

[3] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical recipes in C. Cambridge University Press, 1997.

3



Figure 1 – Power spectra ∆ω
〈
|x̂(d)|2

〉
of the tweezers vs frequency ω/(2π) in the case of a pure

white noise, and comparison with the theoretical spectrum, as given in eq. (15). Continuous red
curve (stopping at f = 10000Hz) : 217 points, ∆t̃ = 0.1, continuous black curve (stopping at f =
50000Hz) : 220 points, ∆t̃ = 0.02. The agreement is extremely good, up to the highest frequencies
where discretisation effects become visible, due to aliasing (high frequencies contributions of the
noise folded back to the low frequency spectrum.)

4


